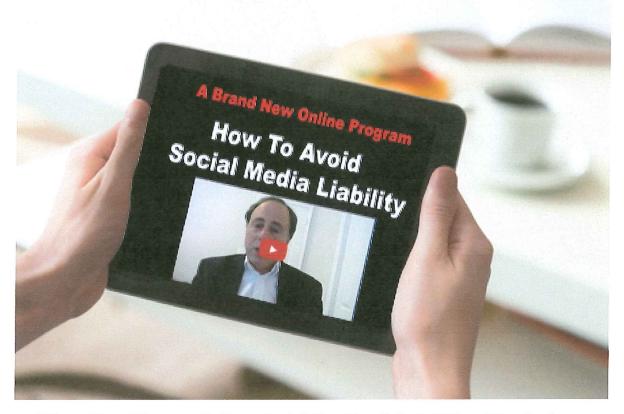
A G E N D A WORK SESSION City of Moberly July 06, 2020 6:00 PM

Requests, Ordinances, and Miscellaneous

- <u>1.</u> A Resolution approving Social Media Training from Mark Fiedelholtz, Social Media Attorney.
- 2. Change Order #1 for the Fisk Ave. RTP project
- 3. Review of a Change Order #1 for the Rt M Phase 2 Pedestrian Bridge.
- <u>4.</u> An Ordinance Amending Ordinance Number 9587.
- An Ordinance Repealing Section 40-715, Subsections (68) And (69) And Replacing Section 40-715 (67) Of The Moberly City Code.
- 6. Discussion of a draft Source Water Protection Plan for Sugar Creek
- 7. A request from Moberly Chamber of Commerce to hold their annual Junk Junction and to close of the 200, 300, 400, and 500 blocks of W. Reed on September 19, 2020 from 5 a.m. to 7:00 p.m.
- <u>8.</u> Consideration of a contract involving the old Junior High building.
- 9. Review of a Caselle Contract Agreement
- <u>10.</u> Engineering Design Scopes of Work

City of Moberly City Council Agenda Summary

Summary:


Training of employees on how to properly use social media and limit exposure to civil liability personally and professionally is urgently needed. Social Media Attorney, Mark Fiedelholtz has created an on-line training course titled How to Avoid Social Media Lawsuits and updates our current social media policies so the policy complies with new federal standards and gives all employees 24/7 access on any device. Cost is 3,900.00 dollars for approximately 129 employees.

- **Recommended** Direct staff to bring to the July 20, 2020 Council meeting for final approval. **Action:**
 - Fund Name: N/A
- Account Number: N/A
- Available Budget \$: N/A

TTACHMENTS:			Roll Call	Aye	Nay
Memo < Staff Report	Council Minutes Proposed Ordinance	Mayor MS_	Jeffrey		
<u>Correspondence</u> Bid Tabulation	Proposed Resolution Attorney's Report	Council M	ember		
P/C Recommendation	Petition	M S	Brubaker		
P/C Minutes	Contract	M S	Kimmons		
Application	Budget Amendment	M S	Davis		
Citizen	Legal Notice	M S	Kyser		
Consultant Report	Other			Passed	Failed

Join Our Email List

A New Powerful \$9 Per Person Online Course That Protects Pubic Employees From Social Media Liability.

Finally, Expert Social Media Liability Training That Won't Deplete Your Training Budget...

Compare The Costs Of My Online Course...

Group Rate

* There is a one time portal set-up fee of \$297 that covers your entire organization. You do not pay this fee again, even if I develop a new course.

Call Now To Register Your Group: 954-748-7698

In A Lawsuit, Your Social Media Policy Isn't Worth The Paper It's Written On Without Proof That It Was Enforced With Specialized Training.

42 U.S.C. 1983, Canton Ohio v. Harris 489 U.S. 378 (1989)

Employees Learn My Powerful 3 Step Red Flag System

- Avoid libel and libel by implication
- · Retweet without fear of liability
- Learn nuances in the First Amendment
- · Create memes, hashtags without liability
- Control negative reviews
- · Learn new video privacy laws
- · Use live streaming without legal fears

"Through this training my unawareness became knowledge and my fear became confidence and competence."

- Acting City Manager Doug Hutchens, Dunedin, FL

Video: Course Overview
Detailed Outline
Full Bio

Frequently Asked Questions

Before And After Comments

Registration Deadline: November 11, 2019

Call Now To Register Your Group: 954-748-7698

Learn More

SUMMARY OF LEGAL CASES

S ocial Media Policy Federal Standards: Liverman v. City of Petersburg 844 F.3d 400 (2016), Social Media and Smartphones Are High Risk Platforms: Packingham v. North Carolina 137 S. Ct. 1730 (2017), Riley v. California 134 S. Ct. 2473 (2014), Elonis v. U.S. 135 S. Ct. 2001 (2015), Privacy Issues: 1st,,4th Amendment of the U.S. Constitution, City of Ontario, California v. Quon 130 S. Ct. 2619 (2010), Unprotected Opinions: Milkovich v. Lorain Journal Company, 497 U.S. 1 (1990), Obvious Need For Training Standards: 42 U.S. 1983, Training Standards, City of Canton, Ohio v. Harris 489 U.S. 378 (1989), Monell v. Department of Social Services, 436 U.S. 658 (1978). Qualified Immunity: qualified immunity applies so long as the official conduct of the individual defendant "does not violate clearly established statutory or constitutional rights of which a reasonable person would have known. Harlow v. Fitzgerald, 457 U.S. 800, 818 (1982), White v. Pauly, 137 S. Ct. 548, 551 (2017), Anderson v. Creighton, 483 U.S. 635, 640 (1987)), Pearson v. Callahan, 555 U.S. 223 (2009). Cahoo v SAS Analytics Inc. 912 F.3d 887 (Cir. 2019). Affirmative Defense For Harassment and Other High Liability Issues : Faragher v. City of Boca Raton, 524 U.S. 775 (1998), Burlington Industries Inc. v. Ellerth, 524 U.S. 742(1998). State of Mind For Punitive Damages Kolstad v. American Dental Ass'n, 119 S. Ct. 218 (1999).

Phone: 954-748-7698

Email:Mark@newsocialmedialaw.com

Wesbsite: legallysafesocialmedia.com

WS #1.

City Of Moberly Social Media Liability Program Proposal

Goal: There are three primary goals in delivering this specialized social media liability program:

1) Comply with the new U.S. Supreme Court and federal rulings regarding Social Media Policy and Training Standards. See *Liverman v. City of Petersburg 844 F.3d 400 (2016)*

2) Mitigate growing professional and personal social media liability exposure to employees (i.e. defamation, harassment, discrimination, invasion of privacy, intentional infliction of emotional distress, copyright infringement)

3) The online course acts as direct evidence that you delivered specialized social media liability training to your employees. This proof acts to weaken claims that you showed "deliberate indifference" to training where the need was obvious. *See 42 U.S. 1983 Training Standards, City of Canton, Ohio v. Harris 489 U.S. 378 (1989), Monell v. Department of Social Services, 436 U.S. 658 (1978).*

Instructor Credentials

Social Media Attorney Mark Fiedelholtz is considered one of the leading national experts and trainers in social media liability. He has trained over 30,000 public sector employees and has been researching and teaching digital media law for thirty years. Here are his specific credentials:

- Member of the Florida Bar
- Juris Doctorate, St. Thomas Law School, Miami, FL
- Masters Public Administration, American University, Washington, D.C.
- Bachelor of Arts, Political Science, American University, Washington D.C.
- 30 years practicing electronic media law
- Trained over 100,000 professionals
- Written 150+ social media policies
- 200 hours a month researching social media
- Featured speaker at national conferences
- Former network television anchor
- Former White House television reporter
- UPI Best Documentary Award
- Principle parts in movies and commercials

1

6

HOW TO AVOID SOCIAL MEDIA LIABILITY SPECIALIZED PROGRAMS (3 Component Parts)

Component #1: Policy Construction

Project	Time Line
Write Social Media Policy	First Draft In Two Weeks
Initial Phone Conference	One Hour
Follow-Up Emails, Phone Conferences	One to Three Months
Completed Social Media Policy	One to Three Months
Discount On Other Policies In The Future	To Be Negotiated

Component #2: Online Social Media Liability Course - Estimated 139 Employees

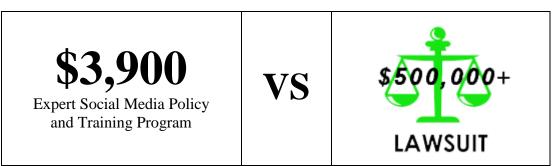
Time I ine

Ττομεεί	1 line Line
You send us your list of participants	Within 1 week all course invitations are sent out
Employees finish 6 core modules (1 hour each)	One year from to complete course
Legal Updates Included In The Program	One year of access to our podcasts, videos, webinars
Q&A Email Sessions	Participants can send me questions by email
Technical and Content Support	Timely answers to pressing questions
Course Completion	Course completed within one year, I send certificate.

Detailed Course Outline

* You don't have to send all the participant emails at once. Your social media team or designated person can send the emails ad hoc. We will send the course invitations out within 24 hours and then invoice you out once a month or other time frame determined by both parties.

Component #3: One Year Consultation


Social Media Attorney Fiedelholtz will be available for one year from the date of signing the contract to engage in scheduled phone consultations and emails to address any social media legal questions that may arise.

Total Cost: \$3,900 for around 129 people.

Project

WS #1.

Cost Comparison and Perspective

Lawsuit Costs: The average social media related lawsuit (i.e. defamation, harassment, invasion of privacy, copyright infringement) is around \$500,000+. Your program is \$3,900.

Insurance Premium Hikes: It should be noted that many insurance carriers are starting to classify social media mistakes as "intentional acts", not accidents and denying coverage. Also, following a social media injury claim, your premiums will dramatically increase which could cost the taxpayer more money.

Policy Costs: The policy cost in this type of package for a smaller city is around \$1900. The policy I'm writing for you normally takes approximately 40 hours which includes drafting, phone conferences, emails, and 3 months of follow-up. My normal price is \$225 an hour x 40 = \$9,000. You save \$7,100 dollars.

Online Course Costs: The online course I quoted you comes out to around \$15 per person based on a one-year license to train up to 129 city employees. My normal online course ranges from \$47 to \$97 per person (With this package you save at least \$4,128 dollars based on the low end of what I charge per person which is \$47 per person.)

One Year Consultation: Most specialized in-house attorneys with my 30 years of media law experience would not offer this type of service or would just charge per hour \$225 per hour. Normally, my one-year retainer agreements are around \$50,000 which includes the ability to schedule phone calls and email me during the year. So, the one-year consultation service is a big savings to your department.

Total Program Savings (Excludes Possible Legal Damages You Would Pay Out In A Settlement, Judgement or Insurance Premium Increase): Based on my normal fees you save You save around \$11, 228 from my normal fees. I know of no other media law attorney with my experience that offers this type of comprehensive program for \$3,900.

Helpful Links On Why This Specialized Training Is So Urgent

Watch This Video On The Need For Specialized Training

Podcast: 3 Myths That Delay This Urgent Training

Webinar: Online Course Roadmap

Webinar: Why My Policy Drafting Program Is So Powerful

5 Negligent Attitudes To Avoid

Petersburg Case Take-Aways

What Triggers Personally Liability

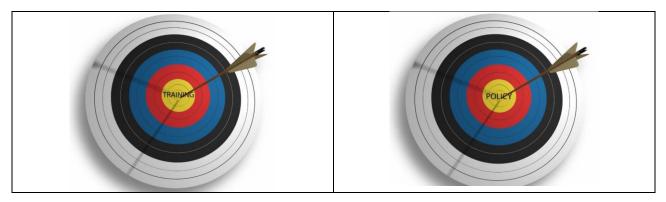
Model Policy Questions You Are Asked In A Lawsuit

3

Frequently Asked Questions About Our Expert Programs

Model Policy Questions You Are Asked In A Lawsuit

Does Your Policy Have These Components


Why PIOs, PR Are Vulnerable To Unlicensed Practice Of Law Claims

Read This White Paper Before You Update Your Policy

The Need To Reevaluate Social Media Risk Exposure

WS #1.

By Social Media Attorney Mark Fiedelholtz

Frequently Asked Questions

Question: Why do loss control professionals need to reevaluate their social media risk exposure?

Answer: In the traditional public sector communications structure thirteen years ago (Pre-Facebook and Twitter), only a Public Information Officer, government decision maker, or marketing professional had access to mass media communications. There was no need for mass media law training beyond the top decision makers, communications professionals and marketing staff.

However, in the past thirteen years, technological developments in personal devices combined with an open access business model offered by social media platforms (Facebook, Twitter, Instagram, WhatsApp, Live Streaming) has shifted the power of mass media broadcasting from a few employees to every employee who desired to access social media platforms. This power shift has created a critical need for all employees to receive core social media law training in the areas of defamation, copyright infringement, privacy issues, First Amendment issues, and other mass media liabilities. Without this specialized training, there is heightened risk exposure for employees which translates into big dollar settlements and judgments.

Question: What makes social media risk exposure so different than other risk exposures?

Here are the big differences that make social media risk exposure unique:

• Employers are encouraging employees to use powerful social media mediums that can permanently destroy a person's reputation worldwide. They are encouraging employees to become brand ambassadors or enhance citizen engagement without in-depth social media liability training. Many governments are focusing on social media marketing without having a social media law expert train employee on the hidden liabilities in the social media speech laws. Courts find this oversight negligent conduct and ripe for a 1983 inadequate training lawsuit.

1

• Every employee has the broadcasting power to destroy a person's reputation worldwide.

- Attorneys and communication professionals can't monitor every "real time" post or tweet. This fact reinforces the need for all employees to receive expert social media liability training.
- There are no takebacks, social media comments become a permanent digital footprint on the Internet landscape.
- Under 42 U.S.C, employees making social media mistakes can be sued in their official capacity and individually. As plaintiff attorneys seek more revenue streams in high dollar social media cases, the risk exposure of employees and decision makers being sued personally for social media mistakes and defective policies heighten. Also, plaintiff attorneys may sue employees personally to enhance their trial strategies (i.e. the employee now has personal objectives that may conflict with the employer's objectives, especially in a deposition or testimony on the stand).
- Most harmful social media messages are powered by strong emotions that act as a primer for defamation, intentional infliction of emotional distress, and other torts.
- Social Media messages are often intentionally targeted at specific classes of people that are federally protected by clearly established laws which diffuse an argument of "Qualified Immunity". *Qualified immunity applies so long as the official conduct of the individual defendant "does not violate clearly established statutory or constitutional rights of which a reasonable person would have known. Harlow v. Fitzgerald, 457 U.S. 800, 818 (1982), White v. Pauly, 137 S. Ct. 548, 551 (2017), Anderson v. Creighton, 483 U.S. 635, 640 (1987), Pearson v. Callahan, 555 U.S. 223 (2009). Cahoo v SAS Analytics Inc. 912 F.3d 887 (Cir. 2019).*
- Juries are more inclined to find punitive damages in social media cases, because the employee intentionally weaponized a powerful social media platform to harm a person or group in front of millions; also, there is a permanency to the comments. Additionally, in proving a workplace hostile environment case, social media is good evidence because it's inherently severe and pervasive (you are reaching millions of people and the comments are permanent footprints on the digital landscape).
- The intentionality of most social media messages opens the door for insurance carriers to deny claims (i..e. intentional exception act). Even if the claims are covered, premiums will skyrocket which directly impacts the taxpayer.

Question: How have the courts and Congress weighed in on this paradigm shift.

Dating back to the 1980s and 1990s, there was significant legislation passed to recognize the growing power of mass media platforms. For instance, Congress passed the Computer Fraud and Abuse Act of 1986, Electronic Communications Privacy Act of 1986, and the Health Insurance Portability And Accountability Act of 1996 and other computer hacking and cyberbullying laws.

As for our courts, the U.S. Supreme Court now classifies social media and smartphones as "high liability" legal topics. This new legal standard compels all employers to reassess their present approach to social media employee training and policy development. *See Packingham v. North Carolina 137 S. Ct. 1730 (2017), Riley v. California 134 S. Ct. 2473 (2014), Elonis v. U.S. 135 S. Ct. 2001 (2015), City of Ontario, California v. Quon 130 S. Ct. 2619 (2010), Liverman v. City of Petersburg 844 F.3d 400 (2016), Social Media and Smartphones Are High Risk Platforms.*

Question: Why can't we have our own attorneys draft a social media policy or just replicate a model policy from a reputable policy service or association?

Simply put, busy in-house attorneys aren't social media law experts and professional trainers. The United States Supreme Court and federal courts have developed a body of law stating that written policies in the public sector, especially concerning "high liability" areas, must be enforced with specifically targeted employee training. The instructor who is an expert in that area; general warnings will not suffice under 42 U.S.C. 1983. See **Need For More In-Depth Training Is Obvious**: *42 U.S. 1983, Training Standards, City of Canton, Ohio v. Harris 489 U.S. 378 (1989), Monell v. Department of Social Services, 436 U.S. 658 (1978). Training Requirements To Capture An* **Affirmative Defense For Harassment and Other High Liability Issues**: Faragher v. City of Boca Raton, 524 U.S. 775 (1998), Burlington Industries Inc. v. Ellerth, 524 U.S. 742(1998). State of Mind For Punitive Damages Kolstad v. American Dental Ass'n, 119 S. Ct. 218 (1999). Here are some important points on the need for specialized social media law training and policy development:

- Workplace policies, especially on "high liability" topics, must avoid vague language and be customized to reflect the "operational realities" of that organization. Liverman v. City of Petersburg 844 F.3d 400 (2016), City of Ontario, California v. Quon 130 S. Ct. 2619 (2010)
- In-house attorneys are placing their trust in boilerplate policies drafted by reputable associations and policy services. Did the in-house attorney perform their due diligence by discovering who wrote the social media policy or did he or she just assume since it was a reputable organization, the policy was credible. This distinction will be amplified in a lawsuit.
- In a lawsuit, in-house attorneys are finding out their model policies have big gaps; this is especially true with reference to the First Amendment policy language.
- The landmark case of Liverman v. City of Petersburg, is emblematic of the risk in tasking busy in-house attorneys to become overnight social media law experts and write social media policies. In fact, they aren't social media law experts. In a desperation to write a social media policy that is legally sound, in-house attorneys unknowingly seek incorrect outside information from reputable conferences and model policies. In the Liverman case this is exactly what happened. The in-house attorney wasn't a social media law expert and formulated her social media policy based on information from a nationally respected association conference and other police agencies. The 4th U.S. Circuit Court of Appeals ruled that the attorney's policy language was unconstitutionally vague, especially with reference to the "free speech" language in the social media policy. The city admitted municipal liability for placing two police officers on probation based on the defective policy. The city paid out a hefty settlement.

- WS #1.
- Judges conclude it's unreasonable to assume a busy in-house attorney has the same skill level we to write a social media policy as a 30-year media attorney specializing in social media law.
- In a lawsuit, governments are realizing they had false sense of security trusting model policies just because they come from a reputable organization. These policies don't hold up in court and leave governments vulnerable in a lawsuit to pay out big dollar settlements and judgments.

Question: How do we develop an effective training program?

To compensate for the historical shift from a heavily regulated mass media access paradigm to a wideopen mass media access paradigm, there must be a dramatic shift in your analytical perspective. My specialized social media liability training and policy development is based on the following:

- ✓ To build an effective social media liability training program, you must approach the problem through a different analytical lens. Social Media is about broadcasting and publishing that warrants solid media law solutions, not just traditional employment law verbal warnings.
- ✓ Yes, there is some crossover between media law and employment law(i.e. defamation, harassment, retaliation), but the powerful strategies I have developed are based on educating newly minted broadcasters and publishers on core mass media laws. For instance, in journalism school you would be required to take a few mass media law courses.
- ✓ There must be a clear understanding that social media is no longer exclusively a public relations issue. As stated before, the U.S. Supreme Court and federal courts recognize social media as a high liability legal topic. The credentials of your instructor and course content must reflect this new designation as a specialized area of the law. Also, non-lawyers must be very careful teaching courses that involve social media legal issues; they could be exposed to unlicensed practice of law claims. All social media marketing courses should include an outside social media attorney training employee on the nuances of the new social media speech laws.
- ✓ To defeat 1983 inadequate training claims, the instructor must be a media attorney who specializes in social media law, not just a busy in-house attorney In a 1983 inadequate training lawsuit or tort claim, you must provide documented evidence that your training reflected the proper risk exposure. More specifically, to sustain judicial review your training must reflect the fact that all employees have the social media access and power to permanently destroy a person's reputation worldwide. Verbal warnings given by busy in-house attorneys or non-lawyers or lightly addressing serious liability issues, won't protect the organization in a lawsuit.

Conclusion

Based on 30, 000 seminar attendees and over 800 online course participants, I can say with certainty that public employees nationwide are unaware of even basic social media liability issues. This gap is costing governments millions in settlements and judgements. If this training gap isn't properly address with expert social media training and policy development, both small and large governmental entities will suffer severe financial loses, especially the small governments existing on a shoe-string budget.

The biggest problem is the failure of governments to recognize that courts classify social media as "high liability" topic. Social Media no longer impacts just the communications or marketing professionals, they impact the constitutional rights of every employee in the workplace, and the third parties that receive their messages. Social Media platforms and digital media are being used by most employees to accomplish critical internal or external critical governmental operations. Also, social media, texts, and other digital media greatly impact the dissemination and archiving of public records.

Being an attorney or attending a few seminars doesn't qualify you as a media law expert. I don't have the qualifications to write real estate contracts just because I'm an attorney. Like doctors, today's attorneys are specialists. If governments continue to rely on busy in-house attorneys to update employee social media training and policies, they stand to lose millions of dollars, the public trust, incur personal liability, and careers will be destroyed.

I compare inadequate social media policy and training to driving a NASCAR Race Car. A persona may know how to drive a car, but not a NASCAR Race Car that accelerates from 0 to 60 in 3 seconds. Inevitably the drive will suffer a horrible crash. Applying this analogy to an employee who didn't receive expert social media liability training, inevitably both the employee's career and personal finances will suffer a horrible crash.

SUMMARY OF LEGAL CASES

Social Media Policy Federal Standards: Liverman v. City of Petersburg 844 F.3d 400 (2016), Social Media and Smartphones Are High Risk Platforms: Packingham v. North Carolina 137 S. Ct. 1730 (2017), Riley v. California 134 S. Ct. 2473 (2014), Elonis v. U.S. 135 S. Ct. 2001 (2015), Privacy Issues: 1st,,4th Amendment of the U.S. Constitution, City of Ontario, California v. Quon 130 S. Ct. 2619 (2010), **Unprotected** Opinions: Milkovich v. Lorain Journal Company, 497 U.S. 1 (1990), **Obvious Need For Training Standards:** 42 U.S. 1983, Training Standards, City of Canton, Ohio v. Harris 489 U.S. 378 (1989), Monell v. Department of Social Services, 436 U.S. 658 (1978). **Qualified Immunity:** qualified immunity applies so long as the official conduct of the individual defendant "does not violate clearly established statutory or constitutional rights of which a reasonable person would have known. Harlow v. Fitzgerald, 457 U.S. 800, 818 (1982), White v. Pauly, 137 S. Ct. 548, 551 (2017), Anderson v. Creighton, 483 U.S. 635, 640 (1987), Pearson v. Callahan, 555 U.S. 223 (2009). Cahoo v SAS Analytics Inc. 912 F.3d 887 (Cir. 2019). **Affirmative Defense For Harassment and Other High Liability Issues**: Faragher v. City of Boca Raton, 524 U.S. 775 (1998), Burlington Industries Inc. v. Ellerth, 524 U.S. 742(1998). State of Mind For Punitive Damages Kolstad v. American Dental Ass'n, 119 S. Ct. 218 (1999).

Agenda Item:	Change Order #1 for the Fisk Ave. RTP project.		
Summary:	Please find attached the change order with an increase of \$3,528.00.		
	The contract price prior to this change order was \$190,017.34. The new price is \$193,545.34		
	Staff recommends approval of this.		
	Direct staff to bring forward to the July 20, 2020 regular City Council meeting for final approval.		
Fund Name:	Transportation Trust		
Account Number:	600.178.5409		
Available Budget \$:	-43,027.57		

ATTACHMENTS:		Roll Call	Aye	Nay
Memo Staff Report Correspondence	Council Minutes Proposed Ordinance Proposed Resolution	Mayor MSJeffrey		
 Bid Tabulation P/C Recommendation P/C Minutes Application Citizen Consultant Report 	Attorney's Report Petition Contract Budget Amendment Legal Notice x Other Agreement	Council Member MS Brubaker MS Kimmons MSDavis MSKyser Passed	Failed	

Change Order No.

WS #2.

Date of Iss	uance: June 15, 2020	Effective Date:	June 15, 2020
Owner:	City of Moberly	Owner's Contract No.:	
Contractor	: JT Holman Construction, LLC.	Contractor's Project No.	:
Engineer:	McClure Engineering Company	Engineer's Project No.:	180021-050
Project:	Fisk Avenue Trail Improvements	Contract Name:	Fisk Ave. Trail
			Improvements

The Contract is modified as follows upon execution of this Change Order: Description: While constructing the trail at the intersection of the entrance to MACC and Fisk Avenue, it was discovered the entrance concrete is in poor condition and needing replaced to better accommodate the trail crossing. The following item will be overrun in the amount shown below. Also see attached Line Item Quantity Summary as well.

Line Item Number 8 "6" thick Concrete Driveway Repair on compacted Type 1 base rock" Total additional cost = 49 SY x \$72 = \$3,528.00

Additionally, days are being added for unsuitable weather through the winter and scheduling conflicts.

Attachments: Line Item Quantity Summary

CHANGE IN CONTRACT PRICE	CHANGE IN CONTRACT TIMES
Original Contract Price:	Original Contract Times: Substantial Completion: <u>December 6, 2019</u>
\$ 190,017.34	Ready for Final Payment: <u>December 21, 2019</u>
	days or dates
Increase from previously approved Change Orders No.	[Increase] from previously approved Change Orders No.
to No:	to No:
	Substantial Completion: 0
\$ <u>0</u>	Ready for Final Payment: <u>0</u>
	days or dates
Contract Price prior to this Change Order:	Contract Times prior to this Change Order:
	Substantial Completion: <u>December 6, 2019</u>
\$ 190,017.34	Ready for Final Payment: <u>December 21, 2019</u>
	days or dates
Increase of this Change Order:	Increase of this Change Order:
	Substantial Completion: <u>165 days</u>
\$ <u>3,528.00</u>	Ready for Final Payment: <u>179 days</u>
	days or dates
Contract Price incorporating this Change Order:	Contract Times with all approved Change Orders:
	Substantial Completion: May 19, 2020
\$ <u>193,545.34</u>	Ready for Final Payment: <u>June 2, 2020</u>
	days or dates

By:	RECOMMENDED: Digitally signed by Aaron McVicker, P.E Date: 2020.06.17 16:01:05-05'00'	By:	ACCEPTED:	By:	ACCEPTED:
	Engineer - McClure		Owner – City of Moberly		JT Holman Construction, LLC.
Title:	Project Manager	Title:		Title:	Project Manager
Date:	2020-06-15	Date		Date	6/16/2020

EJCDC° C-941, (Change	Crder.
Prepared and published 2013 by the Engine Page 2	16	nt Contract Documents Committee.

Agenda Item:	Change Order #1 for the Rt M Phase 2 Pedestrian Bridge.		
Summary:	y: Please find attached the change order with an increase of 13% of the total cost (\$41,884.80).		
	Also attached is a copy of the letter from Bartlett and West explaining the change order.		
	Staff recommends approval of this.		
Recommended Action:	Direct staff to bring forward to the July 20, 2020 regular City Council meeting for final approval.		
Fund Name:	Transportation Trust		
Account Number:	600.168.5409		
Available Budget \$:	19,657.88		

ATTACHMENTS:		Roll Call	Aye	Nay
Memo Staff Report Correspondence	Council Minutes Proposed Ordinance Proposed Resolution	Mayor MS Jeffrey		
Bid Tabulation P/C Recommendation P/C Minutes Application Citizen Consultant Report	Attorney's Report Petition Contract Budget Amendment Legal Notice x Other Agreement	Council Member MSBrubaker MSKimmons MSDavis MSKyser Passed	Failed	

CHANGE ORDER

		Change Order No. 1
Sheet No. <u>1</u> of <u>1</u>		County <u>Randolph</u>
		Route <u>M</u>
To Rhad A Baker Construction	Contractor	Project TAP-4500(209)
You are hereby directed to make the following changes fi	rom the contract.	Job No. <u>TAP-4500(209)</u>

1. Description and Reason for Change (Attach Supplemental Sheets if Required)

The quantities for the bridge abutment were modified based on the final design provided in the procurment phase of this project by the bridge supplyer. No aggregate base was specified so the quatity will be set to 0 CY. The abutment concrete (CY), abutment steel (LB) and abutment aggregate backfill (CY) are changed based on the final approved shop drawing to the quantities noted below.

(A) Unit (B) (D) UNITS PREVIOUSLY (F) UNITS OVERRUN, (G) CONTRACT (H) AMOUNT (l) AMOUNT (C) (E) CONTRACT UNITS ITEM ITEM DESCRIPTION TO BE OF OVERRUN OR PLUS OF UNDERRUN OR MINUS OR AGREED NO PROVIDED CONSTRUCTED UNDERRUN. UNIT PRICE CONTINGENT FOR CONTINGENT CONTINGENT SY 608-60.04 Concrete Sidewalk, 4 in. 19.0 29.0 10.0 \$265.00 \$2.650.00 S 703-99.01 CY Pedestrian Bridge Abutment 12.0 28.0 16.0 \$700.00 \$11.200.00 S Concrete 703-99.02 Pedestrian Bridge Abutment LB 1500.0 3,458.7 1.958.7 \$4.00 \$7.834.80 **Reinforcing Steel** CY 703-99.03 Pedestrian Bridge Abutment 4.0 0.0 -4.0 \$3,000.00 \$12,000.00 Aggregate Base 703-99.04 Aggregate Backfill CY 2.0 32.2 \$1,000.00 \$30,200.00 30.2 TOTALS \$51,884,80 \$12,000.00

Estimate of Cost of work Affected by this Change Order. 2

3. Settlement for Cost of the above Change to be made at Contract Unit Price Except as Noted:

1. CONTRACT AMOUNT		\$91,535.00	The Terms of Settlement outlined above are hereby agreed to.
2. OVERRUN THIS ORDER	\$41,884.80		
3. OVERRUN PREVIOUS	\$0.00		CONTRACTOR
4. TOTAL OVERRUN TO DATE	3	\$41,884.80	by: TERAC \$ 11/2020
5. TOTAL		\$131.419.80	Date

18

that handaller	6/11/2020
SUBMITTED ENGINEER	DATE
APPROVAL RECOMMENDED LOCAL AGENCY	DATE
APPROVAL RECOMMENDED MODOT	DATE
APPROVED MODOT CONSTRUCTION	DATE

1719 Southridge Drive, Suite 100 Jefferson City, MO 65109 ph (573) 634-3181 www.bartwest.com

6-22-20

Tom Sanders City of Moberly 101 W Reed St. Moberly, MO 65270

Re: Route M Change Order

Dear Tom,

Please find attached a final change order for the Route M sidewalk project. This change reflects additional material used in the construction of the pedestrian bridge abutments including concrete, reinforcing steel and aggregate backfill.

Our estimated bid quantities were based on our past experience with similar projects, however those were exceed by the design requirements of the bridge manufacturer. The manufacturer designed the abutments on the load requirements of their premanufactured bridge. The overage in the change order reflects the difference between our estimate and the manufacturer's design.

The amount of the change order is 13% of the total cost of construction for the project. This falls within the threshold we strive to keep within for a project, but recognize this is something no one likes to see. We have a long relationship with the City, and consider ourselves trusted partners, therefore we would like to help. We propose to assist the City in the preparation of its next transportation grant (similar to the scope of services provided on previous TAP applications) at minimal, or no cost.

Thank you for allowing us to work on this and other projects for the City. Don't hesitate to contact us if you have any questions.

19

Regards,

Stor Selitz

Steve Schultz, PE

Agenda Item: An Ordinance Amending Ordinance Number 9587.

Summary: When we previously revised Pig n Bun and KWIX to Shepherd Brothers Blvd, we did not include the section of KWIX road that extends across Gratz Brown to the YMCA. That facility is addressed on KWIX currently. This ordinance would include that section of road as Shepherd Brothers Blvd. The YMCA is aware of this and was requesting their address change.

Staff recommends approval of this.

- **Recommended** Direct staff to bring forward to the July 20, 2020 regular City Council meeting **Action:** for final approval.
 - Fund Name: N/A
- Account Number: N/A
- Available Budget \$: N/A

TACHMENTS:		Roll Call	Aye	Nay
Memo Staff Report	Council Minutes _x_Proposed Ordinance	Mayor MS Jeffrey		
Correspondence Bid Tabulation	Proposed Resolution Attorney's Report	Council Member		
P/C Recommendation	Petition	M S Brubaker		
_ P/C Minutes Application	Contract Budget Amendment	M S Lavis		
Citizen	Legal Notice	M SKyser	_	
Consultant Report	Other		Passed	Failed

BILL NO: _____

AN ORDINANCE AMENDING ORDINANCE NUMBER 9587.

WHEREAS, on January 21, 2020 this council, by Resolution, declared a change of name was necessary for KWIX Road from Gratz-Brown to S. Morley and Pig-N-Bun Road from S. Morley to S. Williams to Shepherd Brothers Boulevard; and

WHEREAS, said Resolution was published at least one week in the Moberly Monitor-Index; and

WHEREAS, during the four-week period following publication of said Resolution no resident property owner along the line of such streets filed written protest against such proposed change of name; and

WHEREAS, on March 16, 2020, this council adopted Ordinance No. 9587 changing the names of KWIX Road from S. Morley Street to Gratz Brown Street and Pig-N- Bun Road from S. Morley Street to S. Williams Street to Shepherd Brothers Boulevard; and

WHEREAS, the name change should have provided that the names of KWIX Road from S. Morley Street south to the south end of KWIX Road and Pig-N-Bun Road from S. Morley Street to S. Williams Street be changed to Shepherd Brothers Boulevard.

NOW, THEREFORE, BE IT ORDAINED BY THE CITY COUNCIL OF THE CITY OF MOBERLY, MISSOURI TO WIT:

SECTION ONE: Pursuant to Article II of Chapter 36, Section 40 of the Moberly City Code the names of KWIX Road from S. Morley Street south to the south end of KWIX Road and Pig-N-Bun Road from S. Morley to S. Williams are changed to Shepherd Brothers Boulevard.

SECTION TWO: The City Clerk is hereby directed to file with the county recorder of deeds a certified copy of this Ordinance.

SECTION THREE: This ordinance shall take immediate effect upon passage by the city council.

PASSED AND ADOPTED by the Council of the City of Moberly, Missouri, this

_____day of _____, 2020.

Presiding Officer at Meeting

ATTEST:

Agenda Item:	An Ordinance Repealing Section 40-715, Subsections (68) And (69) And Replacing Section 40-715 (67) Of The Moberly City Code.
Summary:	This proposed amendment cleans up the no parking ordinances for Gratz- Brown which were previously in conflict with each other and still referenced KWIX road. The only effective change made is that the no parking on the West side of Gratz-Brown between McKinsey and Logan was extended from Logan on North to Rollins. The school buses were having difficulty weaving through parked vehicles on both sides of the street. Staff recommends approval of this.
Recommended Action:	Direct staff to bring forward to regular July 20, 2020 City Council meeting for final approval.
Fund Name:	N/A
Account Number:	N/A

Available Budget \$: N/A

ATTACHMENTS:		Roll Call	Aye	Nay
Memo Staff Report Correspondence Rid Tobulation	Council Minutes Yroposed Ordinance Proposed Resolution Attornay's Papart	Mayor M S Jeffrey Council Member		
Bid Tabulation P/C Recommendation P/C Minutes Application Citizen	Attorney's Report Petition Contract Budget Amendment Legal Notice	MSBrubaker MSKimmons MSDavis MSKyser		
Consultant Report	Other		Passed	Failed

BILL NO: _____

ORDINANCE NO: _____

AN ORDINANCE REPEALING SECTION 40-715, SUBSECTIONS (68) AND (69) AND REPLACING SECTION 40-715 (67) OF THE MOBERLY CITY CODE.

WHEREAS, Section 40-715 of the Moberly City Code pertains to parking prohibitions on certain streets; and

WHEREAS, subsections (67), (68) and (69) of 40-715 all provide for parking restrictions on Gratz Brown Street all of which may be replaced with one subsection; and

WHEREAS, city staff proposes that parking be prohibited on Gratz Brown Street except the west side from Shepherd Brother's Boulevard to a point 1.100 feet south of Shepherd Brother's Boulevard and the east side from Rollins Street to McKinsey Street.

NOW, THEREFORE, BE IT ORDAINED BY THE CITY COUNCIL OF THE CITY OF MOBERLY, MISSOURI TO WIT:

SECTION ONE: Subsections (68) and (69) of Section 40-715 Moberly City Code are hereby repealed and shall be reserved for future use.

SECTION TWO: Subsection (67) of Section 40-715 of the Moberly City Code is hereby repealed and replaced with the following:

(67) Gratz Brown Street, both sides, except:

a. west side from Shepherd Brother's Boulevard to a point 1,100 feet south of Shepherd Brother's Boulevard; and

b. east side from Rollins Street to McKinsey Street.

SECTION THREE: This ordinance shall be in full force and effect upon passage by the City Council.

PASSED AND ADOPTED by the Council of the City of Moberly, Missouri, this _____

day of _____, 2020.

Presiding Officer at Meeting

ATTEST:

City Clerk

67, no parking from McKinsey to East Urbandale (Eliminate)

68, no parking KWIX to Route M, except for 1,100 ft by school

69, has no parking on West side from Logan to McKinsey, need to extend it to Rollins (dashed yellow lir 26

Agenda Item: Discussion Regarding Source Water Protection Plan for Sugar Creek

Summary: The draft source water protection plan was previously provided in hard copy to the City Council as well as during a presentation to the public via webinar on Tuesday June 23, 2020. Public comments to the draft document are due July 15. A discussion will be held with the Council to allow for comments to be included in the final draft of the document before approval by the Council and submission to DNR.

- **Recommended** Authorize staff to complete the final draft of the Sugar Creek Lake Source **Action:** Water Protection Plan for approval by the Council at the August 3 Council meeting.
 - Fund Name: N/A
- Account Number: N/A

Available Budget \$:

ATTACHMENTS:			Roll Call	Ауе	Nay
Memo	Council Minutes	Mayor			
X Staff Report	Proposed Ordinance	M S	Jeffrey		
Correspondence	Proposed Resolution				
Bid Tabulation	Attorney's Report	Council N	lember		
P/C Recommendation	Petition	M S	Brubaker		
P/C Minutes	Contract	M S	Kimmons		
Application	Budget Amendment	M S	Davis		
Citizen	Legal Notice	M S	Kyser		
Consultant Report	Other			Passed	Failed

WS #6.

Executive Summary of Draft City of Moberly Source Water Protection Plan

This executive summary describes the key components of the Source Water Protection Plan (Plan), which is a comprehensive update to the City of Moberly's (City) original Source Water Protection Plan (2004 Plan). Two primary objectives of the 2004 Plan included the reduction of disinfection byproducts (DBPs) and the pursuit of additional water sources to supplement the lake's supply. The goal to reduce DBPs in the City's produced water has been largely met; however, the City has not yet obtained an additional water supply source. Due to observed free ammonia spikes in the lake and the other nutrient sample results, as well as the City's concerns about long -term water supply, the City determined in 2017 that the Plan needed to be updated and expanded. The goal of the revised Plan is to set forth strategies and provide guidance to stakeholders for the protection of Sugar Creek Lake (lake) and its watershed in order to provide sustainable, reliable, and high quality drinking water supply for the City and its customers.

The development process of the Plan, described in Section 2, included guidance from stakeholders and public engagement. Stakeholders developed the following purpose statement to guide the planning process:

"To develop a voluntary program that results in best management practices (BMPs) for activities on Sugar Creek Lake and its watershed."

The City used stakeholder input, lake and watershed data, and additional resources to develop the goals, objectives, and strategies throughout the planning process (Section 3). The goals of this Plan include:

- Goal 1: Maintain and improve water quality for drinking water and aquatic life uses in Sugar Creek Lake
- Goal 2: Maintain a sustainable quantity of water supply for the City of Moberly and its water customers
- Goal 3: Provide ongoing opportunities for public and stakeholder engagement regarding water quality and quantity at Sugar Creek lake and for the City of Moberly

To achieve each goal, the City developed broad objectives with specific implementation strategies detailed in the Plan.

Section 4 of the Plan describes characteristics of the Sugar Creek watershed relevant to the water quality of Sugar Creek Lake, including surface waters, physiographic setting and climate, soils and geology, and land use and land cover. Characteristics of Sugar Creek Lake, including the lake's impairment status, water quality, and sediment quality, are detailed in Section 5 of the Plan.

The primary water quality concerns at the lake include nutrients and resulting algal blooms, and sediment loading. Implementation strategies to address these concerns are listed under Goal 1.

Water supply from Sugar Creek Lake is discussed in Section 6 of the Plan. A water supply yield study of the lake was completed by MDNR in June 2019 to provide an updated understanding of the lake's capacity to meet the City's water demands during drought of record (1951-1960) conditions. The 2019 study used USGS bathymetry survey data and Reservoir System Simulation (HEC-ResSim), a simulation program developed by the U.S. Army Corps of Engineers, to predict the lake's optimal yield during drought of record conditions. This was compared to the current City daily water demand of 1.33 MGD.

The study included two scenarios to account for the effects of seepage from the lake's dam abutment on estimated yield during drought conditions. The first scenario, which assumed no seepage throughout the model run, determined that Sugar Creek Lake could meet the 1.33 MGD demand over ten years during an extended drought. Approximately 9% of the days of the model run experienced near insufficient water supply conditions. The second scenario, which accounted for an estimated seepage range of 750 gpm at full pool to 0 gpm when the lake is empty, concluded the lake's estimated yield, considering seepage, at 1.17 MGD is not sufficient to meet the 1.33 MGD demand.

The yield study also evaluated the lake's storage due to sedimentation from 2003 to 2033. The analysis determined that an additional 12 days of insufficient water yield would result from sedimentation between 2003 and 2033.

MDNR's study highlights the significant effects of sedimentation and seepage on available water supply volume in the lake, including the fact that a portion of the intake is estimated to be buried under approximately 12 feet of sediment. The study recommends the City take steps to reduce volume lost to seepage and create a management plan to ensure water supply in the event the intake must be moved to a higher elevation. A third recommendation of the study is to install USGS level gages upstream of the lake and at the intake location to more accurately estimate inflow to the lake and lake levels. The City is currently taking steps to evaluate and construct an engineered solution to significantly reduce the seepage in the dam abutment.

The final section of the Plan (Section 7), describes the implementation timelines for each of the Plan's strategies. The City began to implement several strategies before the finalization of the Plan, while the implementation of many other strategies is in early stages. The fundamental strategies to accomplish the goals of this Plan include establishing two stakeholder groups that meet regularly, further developing partnerships, and seeking funding for Plan implementation. The City intends to review and update this Plan once every five years to ensure the implementation of strategies to achieve the City's goals for the lake, watershed, and long-term water supply.

29

Sugar Creek Lake Source Water Protection Plan

Prepared for City of Moberly

City of moberly!

June 2019

1001 Diamond Ridge, Suite 1100 Jefferson City, MO 65109 573.638.5000 www.barr.com

Sugar Creek Lake Source Water Protection Plan

June 2019

Contents

1.0	Introduction	1
1.1	Background	1
1.2	Purpose	2
2.0	Planning Process	3
2.1	Approach	3
2.2	Meetings	4
2.3	Public Participation and Input	5
2.3	3.1 Meeting Topics and Key Issues	6
2.3	3.2 Stakeholder Survey Results	8
3.0	Goals, Objectives, and Strategies	9
4.0	Watershed Characteristics	14
4.1	Surface Waters	14
4.2	Physiographic Setting and Climate	14
4.3	Soils and Geology	14
4.3	3.1 Soil Types	15
4.3	3.2 Soil Erosivity and Stream Power	15
4.3	3.3 Geology	15
4.4	Land Use and Land Cover	16
4.4	4.1 Land Cover Change and Pollutant Loads	16
4.5	Other Features of Interest	19
5.0	Sugar Creek Lake Characteristics	20
5.1	Water Quality	20
5.2	1.1 Impairment Criteria	20
5.7	1.2 Water Quality Data	22
	5.1.2.1 City Water Quality Data	23
	5.1.2.2 LVMP Water Quality Data	24
5.2	Sediment Quality	29
6.0	Water Supply	30

^{\\}barr.com\projects\Jeff City\25 MO\79\25791013 City of Moberly Source Water\WorkFiles\2019 Source Water Protection Plan\Sugar Creek Lake SWPP_v2 d3.docx

6.1	Water Treatment	30
6.2	Algae Treatment	31
6.3	Bathymetric and Lake Yield Analyses	32
6.3.	1 USGS Bathymetric Survey and Change Analysis	32
6.3.	2 MDNR Lake Yield Study	32
6.4	Summary of Water Supply Impacts	34
7.0 F	Proposed Implementation	35
8.0 F	References	36

List of Tables

Table 1	Objectives, Strategies, and Implementation Schedule for Goal 1	9
Table 2	Objectives, Strategies, and Implementation Schedule for Goal 2	11
Table 3	Objectives, Strategies, and Implementation Schedule for Goal 3	13
Table 4	2001 and 2016 Sugar Creek Lake Watershed Land Use Data by Category	17
Table 5	Land Use Loading Factors	.19
Table 6	Numeric Criteria Threshold Values for the Plains Ecoregion	21
Table 7	Summary of Sugar Creek Lake Water Quality Data Collection	23
Table 8	City DO and pH Data Summary for Sugar Creek Lake	28
Table 9	Lakes of Missouri Volunteer Program 2018 Algal Data	29

List of Figures

Figure 1	Land Use Change in the Sugar Creek Lake Watershed between 2001 and 2016 by	
	Land Use Category	18
Figure 2	Missouri Ecoregional Numeric Nutrient Criteria Decision Framework based on the	
	Bioconfirmation Approach	22
Figure 3	Chlorophyll-a Seasonal Geometric Mean at LVMP Sites 1 and 2	25
Figure 4	Total Nitrogen Seasonal Geometric Mean at LVMP Sites 1 and 2	26
Figure 5	Total Phosphorus Seasonal Geometric Mean at LVMP Sites 1 and 2	27
Figure 6	Moberly Water Treatment Plant Intake	31
Figure 7	Ultrasonic Algae Controller Unit in Sugar Creek Lake	32
Figure 8	Seepage Bypass from the Sugar Creek Lake Dam to the Lake Spillway	33

List of Large Tables

Large Table 1	Predominant NRCS Soil Types within Sugar Creek Lake Watershed
Large Table 2	City of Moberly Water Quality Data
Large Table 3	Sugar Creek Lake Volunteer Monitoring Site 1 and Site 2 Nutrient Criteria Comparison
Large Table 4	Sugar Creek Lake Volunteer Monitoring Sites 1 and 2 Secchi, Chl-a/TP, and Inorganic
	Suspended Solids Data
Large Table 5	City of Moberly Sugar Creek Lake Algal Data

Large Table 6 City of Moberly Sugar Creek Lake Bottom Sediment Data

List of Large Figures

- Large Figure 1 Sugar Creek Lake Watershed
- Large Figure 2 Sugar Creek Lake Watershed Overview
- Large Figure 3 Land Ownership Adjacent to Sugar Creek Lake
- Large Figure 4 Topography
- Large Figure 5 NRCS Soil Survey Map
- Large Figure 6 Stream Power Index and Soil Loss Potential
- Large Figure 7 Priority Areas for Erosion Inspection
- Large Figure 8 Land Use NLCD 2016
- Large Figure 9 Land Use NLCD 2001
- Large Figure 10 Total Nitrogen Yield
- Large Figure 11 Total Nitrogen Yield Change
- Large Figure 12 Total Phosphorus Yield
- Large Figure 13 Total Phosphorus Yield Change
- Large Figure 14 Total Suspended Solids Yield
- Large Figure 15 Total Suspended Solids Change
- Large Figure 16 Water Sampling Locations
- Large Figure 17 2017 and 2018 Turbidity Concentrations

List of Appendices

- Appendix A 2019 Sugar Creek Lake Yield Study
- Appendix B 2019 Stakeholder Survey Results
- Appendix C USGS 2018 Bathymetric Map for Sugar Creek Lake
- Appendix D USLE and SPI Equations
- Appendix E MDNR Nutrient Criteria Implementation Plan

Abbreviations

BMP	best management practice
DBPs	disinfection byproducts
DO	dissolved oxygen
GeoSTRAT	Geosciences Technical Resources Assessment Tool
HAA	haloacetic acids
ISS	inorganic suspended solids
LMVP	Lakes of Missouri Volunteer Program
MDC	Missouri Department of Conservation
MDNR	Missouri Department of Natural Resources
NLCD	National Land Cover Dataset
NRCS	Natural Resources Conservation Service
QAPP	Quality Assurance Project Plan
SPI	Stream Power Index
SWCD	soil and water conservation district
THM	trihalomethanes
THPWD	Thomas-Hill Public Water Supply District
USDA	U.S. Department of Agriculture
USGS	U.S. Geological Survey
USLE	Universal Soil Loss Equation
WTP	water treatment plant

1.0 Introduction

Sugar Creek Lake (lake) is a 330 acre reservoir on Sugar Creek located approximately 4 miles northwest of the City of Moberly (City) and serves as the City's sole drinking water source (Large Figure 1 and Large Figure 2). The City owns the lake and 269 acres adjacent to the shoreline (Large Figure 3). Although the lake's primary use is drinking water supply for the City, the lake is also used frequently for recreation. Stakeholder interest in the lake's water quality and quantity include, but are not limited to drinking water consumers, recreationists, and landowners within the Sugar Creek Lake watershed (watershed). Over the previous two decades, increased water quality stressors, regulatory drivers, and City population growth have stimulated increased stakeholder interest in the protection of the lake. This Source Water Protection Plan (Plan) sets forth strategies and provides guidance to stakeholders for the protection of the lake and its watershed, in order to provide sustainable, reliable, and high quality drinking water supply for the City and its customers.

1.1 Background

This Plan is a comprehensive update to the City's original Source Water Protection Plan (2004 Plan). The purpose of the 2004 Plan was to establish a document that identified major resource issues and strategies to address the issues to improve the lake's water quality and plan for the longevity of the lake as a drinking water source for the City. The goals of the 2004 Plan included the following:

- Goal 1: Reduce levels of trihalomethanes (THM) and haloacetic acids (HAA), both of which are disinfection byproducts (DBPs), in the City's finished water so that quarterly tests are always below allowable levels
- Goal 2: Ensure there will be enough water to meet the City of Moberly's needs for population and business growth for the next 200 years

Two primary objectives of each of the 2004 Plan's goals were to reduce disinfection byproducts (DBPs) and to seek out additional sources of water supply to supplement the lake's supply, respectively. The goal to reduce DBPs in the City's produced water has been largely met; however, the City has not yet obtained an additional water supply source. Due to observed free ammonia spikes in the lake and the other nutrient sample results, and the City's concerns about long–term water supply, the City determined in 2017 that the Plan needed to be updated and expanded. The City applied for grant funding to complete an update of the Plan through the Missouri Department of Natural Resources' (MDNR) Public Drinking Water Branch, Source Water Protection Grant, and was subsequently awarded a grant that would partially fund this project. MDNR partnered in this Plan through the grant and by conducting an updated lake yield study (Appendix A). The City's partnership with the U.S. Geological Survey (USGS) also contributed to the lake yield study by providing funding and technical expertise in conducting a bathymetric survey of the lake and providing a change analysis with this data.

1.2 Purpose

The purpose of this updated and expanded Plan is to identify goals, objectives, and strategies for the lake and provide a guidance to stakeholders for the long-term protection of the lake as a drinking water source for the City. During the planning process, discussed in Section 2.0, stakeholders developed the following purpose statement to guide this Plan's development:

"To develop a voluntary program that results in best management practices (BMPs) for activities on Sugar Creek Lake and its watershed."

This Plan is also designed to achieve the following objectives:

- describe the planning process used develop the goals, objectives, and strategies for the lake (Section 2.0)
- outline the specific goals, objectives, and strategies for this Plan and include existing and proposed implementation timelines (Section 3.0)
- identify potential watershed-wide sources of pollution that may reasonably be expected to affect the lake's water quality (Section 4.0)
- describe water quality data for the lake with respect to Missouri Water Quality Standards (Section 5.0)
- discuss historic water treatment challenges and long-term water supply (Section 6.0)
- propose steps toward future implementation of goals, objectives, and strategies identified in this Plan (Section 7.0)

2.0 Planning Process

This section presents the City's planning process for this Plan. The City believes that it was critical to include stakeholder and public engagement in the planning process to maximize the benefits of the process and achieve the goals of this Plan. The City developed a stakeholder engagement plan and included broad outreach to the public with many opportunities to provide input regarding the content of this Plan and the needs of the lake and the watershed. This approach included three tiers of planning teams and meetings: the Planning Team, the Core Planning Committee, and the Citizen's Cabinet. These groups included stakeholders that represent a wide variety of needs and perspectives in the watershed. The approach and meeting content is described in Sections 2.1 and 2.2. Section 2.3 provides a summary of key topics discussed at the meetings, as well as summarizing concerns and questions of the stakeholders.

2.1 Approach

The planning process was conducted using a three-tier approach with three groups of stakeholders. The stakeholders groups worked together to assemble information and input for the planning process. The three tiers of the planning process included the following:

- Planning Team
- Core Planning Committee
- Citizen's Cabinet

The first tier of the planning process began with the Planning Team, which consisted of staff from the City staff, MU Extension, Boone Consulting, and Barr Engineering Co. The following individuals were members of this team:

- Mary West-Calcagno, Director of Public Utilities, City of Moberly
- Matt Everts, Chief Operator, City of Moberly
- Tony Boone, Boone Consulting
- Tish Johnson, University of Missouri, Extension
- Andrea Collier, Barr Engineering Co.

The Planning Team met in person and via conference calls to develop an initial framework that resulted in the next two tiers of public engagement. In addition, this team coordinated and facilitated for public meetings, which included content development, data presentation, guest speaker coordination, meeting summaries, and documentation of the public engagement process.

The Planning Team identified that a second tier of planning was needed and would be called the Core Planning Committee. The Core Planning Committee members consisted of all of the members of the Planning Team, and the following stakeholders:

- Eric Breusch, Randolph County Health Department
- Dhruba Dhakal, University of Missouri, Extension
- Todd Walker, City of Moberly Parks & Recreation Department
- John Kirchhoff, Randolph County Soil and Water Conservation District
- Brian Todd, Missouri Department of Conservation (MDC)
- Bob Riley, community resident and volunteer

The Core Planning Committee was convened to determine how to design and facilitate the larger public engagement process, or third tier of stakeholder meetings. This third tier of the planning process was named the Citizen's Committee. Attendees of the Citizen's Committee meetings included all of the Planning Team members and the Core Planning Committee members, the public, and stakeholders representing the following sectors:

- Lake watershed residents and land owners
- Agricultural producers and land owners
- Business and industry
- Non-profit organizations
- Education
- Lake recreation
- Newspaper and radio media
- City government
- County government
- State government
- Federal government

2.2 Meetings

The Planning Team met in person or conducted conference calls to coordinate and plan meetings with stakeholders and the public. The Planning Team developed content for the meetings and engaged as participants. Provided below are the meeting dates for all of the meetings the City hosted with the Core

Planning Committee and the Citizen's Cabinet. These in-person meetings provided key input to developing Plan content and examining existing data and information for the lake and watershed. The Core Planning Committee met in person on the following dates:

- June 12, 2018
- June 28, 2018
- July 20, 2018

The goals and content of the Core Planning Committee meetings included determining all of the categories of stakeholders that should be notified about the Citizen's Cabinet meetings, key topics to discuss in the meetings, and important data and information to present in the meetings. The Core Planning Committee assisted the Planning Team in making decisions about and prioritizing meeting content for the Citizen's Cabinet meetings. The Citizen's Cabinet included a broad range of stakeholders and was open to the public. These public meetings convened after the Core Planning Committee met three times. The Citizen's Cabinet met in person on the following dates:

• August 23, 2018

• December 11, 2018

January 10, 2019

• September 25, 2018

• January 29, 2019

November 29, 2018

The goals and content of these meetings included reviewing watershed characteristics, reviewing available data and information regarding the lake and watershed, identifying goals for the lake and watershed, identifying key concerns of stakeholders, and providing a forum for discussion and input to be provided to the City. These meeting topics are summarized in Section 2.3.

2.3 Public Participation and Input

The input provided by stakeholders in the Core Committee and Citizen's Cabinet meetings was very broad and many of the topics were discussed at several meetings; this input is summarized below. In addition, multiple newspaper articles were written about the planning process by the Moberly Monitor-Index.

During the planning meetings, stakeholders developed the following statements to cast vision for the planning process and this Plan:

Community Representation Statement

"We endeavor to represent diverse community interests, to educate and motivate citizens to protect all water uses at Sugar Creek Lake for present and future generations."

Source Water Protection Plan Purpose Statement

"To develop a voluntary program that results in best management practices (BMPs) for activities on Sugar Creek Lake and its watershed."

2.3.1 Meeting Topics and Key Issues

Topics that were discussed in the meetings included, but were not limited to the following:

- Watershed characteristics
- Defined the lake as City infrastructure that must be operated and maintained
- Available quantity of the lake's raw water supply
- Lake water sample data and pollutant loads in the lake
- Lake bottom sediment and resuspension of nutrients
- Operation of the Water Treatment Plant (WTP) and treatment challenges
- Algae bloom control
- Property ownership adjacent to the lake shoreline
- Concerns and impacts regarding specific pollutants
- Current lake water quality impairment and potential future impairment for nutrients
- Potential sources of pollutants in the lake and watershed
- Soil erosion and high velocity ravines
- Concerns regarding flood and drought response
- Stakeholder interest and concerns about use of the lake for recreation
- Land cover data and estimated pollutant loads
- City stormwater management plan and practices
- BMPs that could be employed in the watershed
- Public education and outreach opportunities
- Stakeholder concerns and questions about Plan implementation
- Sources of funding for Plan implementation

Key questions and concerns (paraphrased and summarized below) of stakeholders that were discussed in the meetings and influenced Plan goals and content, included, but are not limited to the following:

• Water quality:

- Stakeholders asked if the City had examined the available water quality data for the lake and determined the relative severity of the pollutant concentrations. Data was summarized and presented in meetings to support this discussion. It was discussed that the lake is currently on the 303(d) list of impaired water bodies for mercury in fish tissue, and is not listed as impaired for nutrients, but may be trending toward nutrient impairment.
- Stakeholders asked if the City could identify sources of pollutants in order that these pollutant sources could be mitigated. It was discussed that additional data may need to be collected and analyses conducted to identify pollutant sources and relative impacts of those sources.

• Water quantity:

- Stakeholders asked if the City had determined whether the lake is a sustainable long-term source of water supply. In order to begin to address this question, MDNR and USGS partnered with this City to update the Lake Yield Study (Appendix A).
- Stakeholders expressed concerns that the lake is the City's sole source of water supply and that City does not have a backup source of drinking water.

• Outreach and public engagement:

- 5 Stakeholders indicated that an increase of public awareness is needed regarding the use of the lake as the City's drinking water source, and the water quality concerns in the lake.
- Stakeholders asked about how to most effectively engage with the public, and how to sustain this engagement. The City expressed intentions to seek out ongoing stakeholder and public input through established groups and in-person meetings. Members of the local media outlets were present at meetings and provided information via articles and radio broadcasts. Social media use was included and was encouraged to be used an ongoing means of outreach. Outreach through schools (primary, secondary, and higher education) was determined to be another important component of the City's future plans for outreach.
- Stakeholders indicated that public meetings are welcome and should continue in an ongoing manner after the 2019 Plan is finalized. The City stated its intent to continue inperson meetings with stakeholders.
- Funding and partnerships: Stakeholders asked if sources of funding exist that could be used to
 address needs at the lake and in the watershed. Sources of funding were discussed, including the
 State Revolving Fund, MDNR's Multipurpose Water Resources Program Fund, and Soil and Water
 Conservation Program and U.S. Department of Agriculture (USDA) Natural Resources

Conservation Service (NRCS) cost share programs. Discussions about partnerships with agencies, local governments, and managers of funding sources was central to this topic.

• Agricultural landowner concerns: Agricultural producers and land owners expressed both interest and concerns about the City's expectations for use of BMPs on their property, and perceived impacts of agriculture on the lake water quality. This was a key topic in each meeting, and the City engaged to address agricultural land owners' concerns. In summary, the City stated that agriculture is not the only contributor to pollutants in the lake; however, the City also expressed that it is important to understand that any BMPs that are implemented in the watershed would help reduce nutrient and sediment loads. MDNR Soil and Water Conservation Program and District staff provided several presentations on funding and cost-share opportunities for agricultural land owners.

2.3.2 Stakeholder Survey Results

The University of Missouri Extension conducted an online survey of stakeholders in March 2019. Potential survey respondents were notified of the survey opportunity at public meetings and by email. A total of 54 people submitted responses to the five questions in the survey. Survey results are provided in Appendix B. The survey results were used to inform the content of public meetings, particularly the Citizen's Cabinet, and the content of this Plan. In summary, respondents to the survey provided the following information and input:

- 50 of the 54 respondents were aware of the lake is a drinking water source (survey question 1).
 Two of the other respondents were unsure if the lake is a drinking water source. The other two respondents responded that they did not think the lake is a source of drinking water.
- 52 of the 54 respondents expressed a connection to either living, working, recreating, or drinking water from the watershed (survey question 2).
- When asked if the respondents had enough information to know about watershed concerns, half the respondents (27) answered "No, but I would like to learn more" (survey question 3). 18 of the respondents answered "Yes", 8 answered "Unsure", and one answered "No, I'm not interested".
- Respondents' three greatest concerns for the lake (survey question 4) included illegal dumping, septic systems, groundwater contamination, and public education about issues impacting the watershed. Respondents' four least concerns for the lake included public use, wildlife, boating and local residents (wildlife, boating, and local residents tied for the second least concern after public use).
- A majority of respondents answered that they were willing to take action at some level to improve water quality in the lake (survey question 5).

3.0 Goals, Objectives, and Strategies

This section describes the goals, objectives, and strategies developed to guide this Plan's use for the protection of the lake and its watershed. The City used stakeholder input, lake and watershed data, and additional resources to develop the goals, objectives, and strategies throughout the planning process (Section 2.0). The goals of this Plan include:

- Goal 1: Maintain and improve water quality for drinking water and aquatic life uses in Sugar Creek Lake
- Goal 2: Maintain a sustainable quantity of water supply for the City of Moberly and its water customers
- Goal 3: Provide ongoing opportunities for public and stakeholder engagement regarding water quality and quantity at Sugar Creek lake and for the City of Moberly

To achieve each goal, the City developed broad objectives with specific implementation strategies. Table 1 through Table 3 summarize the objectives and strategies of Goals 1 through 3, respectively. Each table includes an implementation schedule for each strategy. Some strategies are listed as having an "ongoing" implementation schedule, which means that efforts are either indefinitely ongoing or have been initiated.

Goal 1: Maintain and improve water quality for drinking water and aquatic life uses in Sugar Creek Lake						
Objective	Strategy	Implementation Schedule				
	1. Develop a Quality Assurance Project Plan (QAPP) for sampling that will support the City's need to better understand pollutant loads and sources. Submit the QAPP for Missouri Department of Natural Resources (MDNR) review and approval.					
	2. Measure soluble phosphorus concentration in the lake and septic tank effluent in the watershed near the lake.					
1. Collect additional data to	3. Measure concentrations of total nitrogen and plant-available forms of nitrogen in the lake.					
improve understanding of pollutants in the	4. Coordinate and schedule volunteer Stream Team training to be held in or near the watershed.					
lake.	5. Conduct total suspended solids (TSS) and turbidity sampling in concert with other parameters to track sediment runoff and determine whether there is a correlation to nutrient loading from stormwater runoff. Use this data to identify possible sources of nutrient and sediment loads.					
	6. Install and operate a continuous lake level and rainfall gauge to track rainfall and lake level, for use in concert with lake sampling data and analyses.					

Table 1 Objectives, Strategies, and Implementation Schedule for Goal 1

Goal 1: Maintain and improve water quality for drinking water and aquatic life uses in Sugar Creek Lake					
Objective	Strategy	Implementation Schedule			
2. Gather more information about water quality in the lake and sources of	1. Develop a QAPP for sampling that will support the City's need to better understand pollutant loads and sources. Submit the QAPP for MDNR review and approval.				
	2. Continue to obtain information about land-use in the watershed, such as review and mapping of the data from the National Land Cover Dataset (NLCD) and Soil and Water Conservation District (SWCD) information.				
pollutants in the watershed.	3. Conduct water quality modeling and conduct monitoring of specific known pollutant sources (e.g., old mines, old rail lines, high velocity ravines, etc.), to gain understanding about sources impacting lake water quality.				
	1. Conduct an inventory of small, onsite wastewater treatment systems, including septic tanks, septic treatment systems, and lagoons.				
	2. Develop and update small onsite treatment system standards for new users, in coordination with Randolph County Health Department.				
3. Address	3. Improve City compliance assistance tools by identifying and addressing gaps in ordinances within the city and county.				
challenges with septic tanks and lagoons.	4. Develop a program to assist in cost-sharing of individuals with septic system pumping.				
	5. Consider investing City funds into acquisition of inactive or unused properties in watershed that are identified as a source of pollutants to the lake.				
	6. Provide Educational opportunities and encourage public involvement to engage property owners, tenants, realtors, bankers, and septic tank pumpers.				
	1. Establish partnerships with the local SWCD, Missouri Department of Conservation (MDC), MDNR, and US Department of Agriculture – Natural Resources Conservation Service (NRCS). Seek out financial assistance opportunities through these partnerships.	Ongoing			
	2. Establish a partnership with the Randolph County Health Department and the County Commission.	Ongoing			
4. Address non- point sources of	3. Encourage the use of design standards for projects exposed to stormwater, with a goal of no more than 3 ton/acre/year soil loss.				
pollutants.	4. Inspect high-risk ravines that drain to the lake that are likely to be transporting the highest quantities of sediment to the lake. Consider BMPs that would address erosion and subsequent sediment transport to the lake.				
	5. Determine feasibility of the use of up-watershed reservoirs or forebays as BMPs.				
	6. Determine locations along the lake shore that would most benefit from erosion protection, and if feasible, implement BMPs.				

Goal 2: Maintain a sustainable quantity of water supply for the City of Moberly and its water customers						
Objective	Strategy	Implementation Schedule				
1. Understand current	1. Include the MDNR Firm Yield Study results in the Source Water Protection Plan.	June 2019				
source capacity.	2. Review the results of MDNR's 2019 Firm Yield Assessment and USGS's 2019 Bathymetric Survey report with MDNR, and discuss need and strategies to supplement source capacity.	Ongoing				
	1. Gather information and data regarding future water demands that considers population growth and economic growth of the City.	Ongoing				
2. Understand current and future water demands that account for economic	2. Develop an economic development-oriented water supply plan that uses desired and predicted growth to quantify future water needs.	Ongoing				
development.	3. Identify funding options to conduct more detailed water supply planning.	Ongoing				
	 Identify funding sources to purchase and/or construct additional source(s) of water supply. 	Ongoing				
	1. Identify all potential nearby sources of water supply, and conduct planning at the feasibility level regarding availability and cost, and utilizing data from previous studies as well as additional data and/or studies.	Ongoing				
3. Gather more information about	2. Continue communication with The U.S. Army Corps of Engineers regarding obtaining additional water supply storage at Long Branch Lake.	Ongoing				
water quality in the lake and sources of pollutants in the watershed.	3. Determine the feasibility of purchasing water storage at Long Branch Lake, and distribution of the water to the City's customers.	Ongoing				
	4. Consider the feasibility of the City expanding water service to a regional system of customers (i.e., other cities, county, and rural water districts).					
	5. Identify funding sources to purchase and/or construct additional source(s) of water supply and distribution.					

 Table 2
 Objectives, Strategies, and Implementation Schedule for Goal 2

Goal 2: Maintain a sustainable quantity of water supply for the City of Moberly and its water customers						
Objective	Strategy	Implementation Schedule				
	1. Reduce sediment loads entering the lake by implementing strategies under Goal 1.					
	2. Consider the feasibility of the construction of up-watershed reservoirs to increase water supply storage.					
	3. Consider the feasibility and potential costs/benefits of raising the dam at Sugar Creek Lake to increase water storage volume.					
4. Develop and	4. Consider the feasibility and cost of dredging at Sugar Creek Lake to increase water storage volume.					
preserve water supply storage volume at Sugar Creek Lake.	5. Complete a project to reduce seepage through the abutments of the dam, which would increase the available water supply yield from the lake.	Ongoing				
	6. Consider the feasibility of indirect water reuse to increase water availability.					
	7. Conduct a hydraulic and hydrologic analysis in the watershed to gain knowledge of water transport and availability under various climate conditions.					
	8. Identify funding options for implementation of strategies that are considered to be feasible.					
	1. Quantify all non-revenue use of water from the City's system.					
5. Encourage water users and customers to use water conservation practices.	2. Determine if reductions can be made to non-revenue uses of water, including distribution system water loss.					
	3. Provide educational information to the public about ways to conserve water.					
	4. Consider methods to incentivize water conservation practices, especially among the highest water users.					

Goal 3: Provide ongoing opportunities for public and stakeholder engagement regarding water quality and quantity at Sugar Creek Lake and for the City of Moberly					
Objective	Objective Strategy				
	1. Define the various types of stakeholders and groups that the City should engage.	Ongoing			
	2. Build a contact list for stakeholders and groups that the City is actively engaging.	Ongoing			
1. Target each group of stakeholders with	3. Establish at least two stakeholder groups that meet regularly in-person; one with a focus on water quality at the lake, and another with a focus on water supply.	One group established in 2018			
different types of engagement.	4. Include educational information in water bills.				
	5. Establish a quarterly water newsletter to be distributed to City customers and stakeholders who work, live or recreate in the watershed.				
	6. Continue to engage with stakeholders with interest in recreation at the lake in all available forums or media.				
	1. Develop a water-themed mascot and related messaging to engage with and provide messaging to the public.				
2. Engage the public to	2. Use storytelling techniques in messaging and media to engage and inform the public.				
establish support for the Source Water Protection Plan.	3. Consider other creative ways to engage the public through in- person engagements and media.				
	4. Utilize partnerships to engage a broader base (SWCD, Randolph County Health Department, Randolph County Commission, Moberly Area Economic Develop Corporation, etc.).				
3. Continue to take steps to be an example to the public by implementing best practices first.	1. Continue to implement the measurable goals of the City's Stormwater Management Plan.	Ongoing			
	2. Continue to implement consistent policies and improvements to permitting, management, and follow up on new development sites.	Ongoing			
	3. Implement and update City housekeeping procedures and staff training to protect the City's stormwater infrastructure, and prevent runoff of pollutants.				

Table 3 Objectives, Strategies, and Implementation Schedule for Goal 3

4.0 Watershed Characteristics

The watershed, approximately 7,000 acres (11 square miles) in size, is located in north central Missouri in Randolph County (Large Figure 1). The watershed stretches approximately 6 miles from its northern boundary, located south of the City of Cairo, Missouri, to its southern boundary, located in the northwestern portion of the City of Moberly. The following subsections describe characteristics of the watershed, including surface waters (Section 4.1), physiographic setting and climate (Section 4.2), surface waters (Section 4.1), soils and geology (Section 4.3), and land use and land cover (Section 4.4).

4.1 Surface Waters

Surface waters within the watershed, including waterbodies and wetlands, are included on Large Figure 1. As shown in Large Figure 1, multiple first and second order unnamed streams serve as tributaries to the lake. The outlet of the lake is Sugar Creek, which flows 4.6 miles until its confluence with the East Fork of the Little Chariton River.

4.2 Physiographic Setting and Climate

The watershed, approximately 7,000 acres in size, is a subwatershed of Missouri's Little Chariton River Watershed (Hydrologic Unit Code 10280203) located in the Missouri River Basin. The watershed lies within an ecological region known as the Central Dissected Till Plains, which is located north of the Missouri River and formed through soil deposition from glaciation (reference (1)). The Dissected Till Plains extend into Iowa, Illinois, Kansas and Nebraska and are relatively flat, other than river valleys and hills formed through erosion, much of which resulted from glacial runoff (reference (1)). Elevation in the watershed ranges from approximately 870 feet at the top of the eroded Sugar Creek River Valley to 746.8 feet at the dam spillway (Large Figure 4 and Appendix C).

North central Missouri has a humid continental climate characterized by long, hot summers and cool winters (reference (2)). The region (Moberly, MO climate station) receives an average annual precipitation of 43.22 inches (1981-2010, reference (3)). May is typically the wettest month, receiving an average precipitation of 5.16 inches (reference (4)). The historical high and low annual precipitations at the Moberly Climate Station between 1936 and 2018 were 65 inches in 2008 and 22 inches in 1988 (reference (5)). The average annual temperature for the area is 53.8 degrees Fahrenheit. January, the coldest month of the year, averages high and low temperatures of 37 and 19 degrees Fahrenheit, respectively, while July, the hottest month of the year, averages high and low temperatures of 87 and 67 degrees Fahrenheit (reference (4)).

4.3 Soils and Geology

The following sub-sections include soil and geology information for the watershed. Section 4.3.1 includes the predominant soil types found within the watershed, Section 4.3.2 includes an analysis of soil erosivity and stream power within the watershed to identify erosion prone areas, and Section 4.3.3 provides information on the uppermost geologic units in the watershed.

4.3.1 Soil Types

Based on the USDA NRCS Soil Survey, the predominant soil types within the watershed are depicted on Large Figure 5 and summarized in Large Table 1. Soil types within the watershed consist of silty loams that range from nearly level to gently sloping soils in the upper areas of the watershed (Mexico-Leonard-Putnam association) to moderate to steep slopes near the lakeshore (Gosport-Gorin association). In general, soil types on steeper slopes tend to have greater drainage than those on level to moderately sloped areas. Permeability of the soil, which is the ability of the soil to infiltrate water, is very low for the silt loams within the watershed, which increases their potential erosion and seasonal wetness.

4.3.2 Soil Erosivity and Stream Power

Erosion prone areas within the watershed were identified using the Universal Soil Loss Equation (USLE) and stream power indices. The USLE (Appendix D, Equation 1) predicts annual average soil loss or erosivity due to rainfall. The Stream Power Index (SPI) equation measures the erosive power of flowing water (Appendix D, Equation 2) and identifies areas within the watershed that are prone to channel formation. Barr identified areas of the watershed most prone to erosion by combining USLE and SPI results (Large Figure 6); areas with high soil loss and a high SPI are considered to have greatest risk of erosion and occur within ravines close to the shore of the lake (Large Figure 7). Barr recommends that the City inspect these ravines periodically for erosion issues.

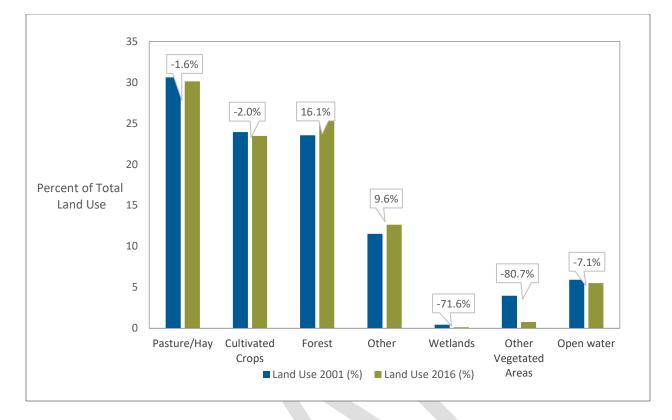
4.3.3 Geology

According to the Missouri Geological Survey Geosciences Technical Resources Assessment Tool (GeoSTRAT), the geology underling the watershed area is comprised of Mississippian and Pennsylvania aged bedrock units overlain by approximately 50 to 65 feet of unconsolidated residuum. The Pennsylvanian bedrock units found near the surface around the watershed consist of the Marmaton Group and the Cabaniss Subgroup of the Cherokee Group. In a typical geologic sequence the Marmaton Group conformably overlies the Cabaniss Subgroup.

According to GeoSTRAT, the Cabaniss Subgroup is the shallowest bedrock on the western edge of and underlying the lake, while the Marmaton Group is the shallowest bedrock along the eastern edge of the lake. The Cabaniss Subgroup in Missouri is comprised of sandstone, siltstone, shale, limestone and coal beds and consists of 11 successions or cyclic units with coal beds near the top with some minor exceptions. The Marmaton Group is comprised of a succession of shake, limestone, clay, and coal beds. In comparison with the Cabaniss Subgroup, the Marmaton Group contains thicker and consistent limestone units.

In contrast to the geologic information provided by GeoSTRAT, the well log for a nearby water supply well No. 006285 (Large Figure 1), located approximately 0.8 miles southwest of the lake's spillway, indicates that the Mississippian Warsaw Formation is the shallowest bedrock unit. The Warsaw formation is comprised of a coarsely crystalline, fossiliferous limestone intermittent with finely crystalline dolomitic limestone (reference (6)).

4.4 Land Use and Land Cover


The watershed has a variety of land uses due to the combination of rural, urban, and recreational areas. The lake is a popular recreation destination for activities such as fishing and boating. Land adjacent to the lake primarily consists of forest, agriculture (pasture and hay), and private residences. As of the 2016 National Land Cover Database (NLCD) dataset, approximately half of the land use in the watershed is used for agricultural production (Large Figure 8).

4.4.1 Land Cover Change and Pollutant Loads

Large Figure 9 and Large Figure 8 display 2001 and 2016 land use in the watershed from NLCD, respectively. Based on the NLCD's 2016 dataset, pasture and hay land comprise the land use type with the greatest area in the watershed, followed by cultivated crops, forest, other land (developed areas and barren lands), open water, other vegetated areas, and wetlands. Table 4 and Figure 1 display land use changes between the 2001 and 2016 land cover datasets. As seen in Table 4 and Figure 1, forested areas experienced the greatest increase between the 2001 and 2016 data sets (16.1 percent increase), while other vegetated areas, which include grassland/herbaceous and shrub/scrub land uses, experienced the greatest decrease between the 2001 and 2016 data sets (80.7 percent decrease).

Land Use Category	2001 Category Percent of Total Land Use	2016 Category Percent of Total Land Use	Category Percent Change from 2001 to 2016
Pasture/Hay	Total: 30.63%	Total: 30.15%	-1.6%
Cultivated Crops	Total: 23.96%	Total: 23.47%	-2.0%
Forest	Subcategories: • Deciduous: 23.53% • Evergreen: 0.02% • Mixed: 0.02% Total: 23.57%	 Deciduous: 23.53% Evergreen: 0.02% Mixed: 0.02% Mixed: 1.29% 	
Other	Subcategories: • Developed High Intensity: 0.17% • Developed Medium Intensity: 1.45% • Developed Low Intensity: 3.35% • Developed Open Space: 6.49% • Barren Land: 0.07% Total: 11.53%	Subcategories: • Developed High Intensity: 0.56% • Developed Medium Intensity: 2.29% • Developed Low Intensity: 3.94% • Developed Open Space: 5.74% • Barren Land: 0.10% • Total: 12.63%	+9.6%
Open Water	Total: 5.92%	Total: 5.50%	-7.1%
Other Vegetated Areas Subcategories: • Grassland/herbaceous: 3.91% • Shrub/scrub: 0.05% Total: 3.96%		Subcategories: • Grassland/herbaceous: 0.71% • Shrub/scrub: 0.05% Total: 0.76%	-80.7%
Wetlands	Subcategories: • Emergent herbaceous wetlands: 0.16% • Woody wetlands: 0.26% Total: 0.42%	Subcategories: • Emergent herbaceous wetlands: 0.05% • Woody wetlands: 0.07% Total: 0.12%	-71.6%
TOTAL	100%	100%	

Table 42001 and 2016 Sugar Creek Lake Watershed Land Use Data by Category

Figure 1 Land Use Change in the Sugar Creek Lake Watershed between 2001 and 2016 by Land Use Category

Land use may be used to estimate some pollutant loads in the watershed that may run off to the lake, such as nutrients and sediment. Three common pollutants of interest for the watershed from land use sources include total phosphorus, total nitrogen, and suspended solids. A review of land use loading factors in the watershed determined that natural landscapes, such as forests, grasslands, and barren land contribute the lowest pollutant loads of various land use types within the watershed, while cultivated crops and urban development contribute the highest pollutant loads of the watershed's land use types. Table 5 presents the loading factors for each pollutant by land use type.

An analysis of land use and loading factors in the watershed indicate that from 2001 to 2016, overall watershed loading from total phosphorus and total suspended solids have decreased by 0.029 lbs/acre/year and 363 lbs/acre/year, respectively, while loading from total nitrogen has increased by 0.93 lbs/acre/year. Large Figure 10 through Large Figure 15 display loading and the loading change from 2001 to 2016 by subwatershed.

	Loading Factor (lbs/acre/year)			
Land Use Type	Total Phosphorus ⁽¹⁾	Total Nitrogen ⁽²⁾	Total Suspended Solids ⁽³⁾	
Barren Land	0.10	3.34	2	
Cultivated Crop	0.89	5.68	2626	
Deciduous Forest	0.09	2.19	5	
Developed, High Intensity	0.30	10.28	350	
Developed, Low Intensity	0.30	9.70	150	
Developed, Medium Intensity	0.30	5.16	250	
Developed, Open Space	0.31	3.56	64.5	
Emergent Herbaceous Wetlands	0.22	2.07	43	
Evergreen Forest	0.09	2.19	5	
Grassland/Herbaceous	0.09	0.96	5	
Mixed Forest	0.09	2.19	5	
Open Water	0.00	0.00	0.00	
Pasture/Hay	0.54	4.45	50	
Shrub/Scrub	0.13	1.10	27	
Woody Wetlands	0.22	2.07	43	

Table 5Land Use Loading Factors

(1) Sources reference (7), reference (8), Appendix A to reference (9), and reference (10)

(2) Sources reference (7), reference (11), and Appendix A to reference (9)

(3) Sources (reference (7) and reference (12)

4.5 Other Features of Interest

Other watershed features of interest relevant to this Plan include Cooksies Quarry and private septic systems. The influence of Cooksies Quarry and private septic systems on the lake's water quality was frequently mentioned as pollutant sources in stakeholder meetings during the planning process of this Plan (Section 2.0). Cooksies Quarry is an inactive stone quarry located on City property east of lake's eastern arm (Large Figure 1). The City currently owns and has complete control over the quarry property (Large Figure 3). Due to a lack of data, the Quarry's influence on lake sedimentation has not been quantified. Private septic systems may contribute nutrients and pathogens to surface waters, particularly in areas where groundwater and soil conditions are unsuitable or the density of septic systems is high (reference (13)). The influence of private septic systems on the lake's water quality is undetermined; however, Strategy 1, Objective 2 of Goal 1 of this Plan is to quantify and address the contributions from these pollutant sources to prioritize actions to reduce pollutant loads to the lake (Table 1).

5.0 Sugar Creek Lake Characteristics

The following sub-sections describe the lake's impairment status, water quality, sediment quality. Section 5.1 describes the lake's water quality and MDNR impairment status. Section 5.2 discusses the influence of sedimentation on the lake's sediment quality and water quality.

5.1 Water Quality

Maintaining and improving water quality in the lake, particularly with respect to drinking water supply and recreation, is a high priority for stakeholders. Primary stressors for the lake include sediment, organic material, and nutrients. Nutrients encompass all forms of phosphorus and nitrogen, including free ammonia. The sources of the lake's stressors may include land use (Section 4.4) and soil erosivity (Section 4.3.2). Although the lake's only impairment as of the writing of this Plan is for mercury in fish tissue (refer to Section 5.1.1), the City does not consider mercury to be a primary stressor in the lake with respect to the lake's use as a drinking water source. The impairment for mercury in fish tissue is by air deposition, and as such, is not specifically addressed in this Plan.

5.1.1 Impairment Criteria

The lake is classified by the State of Missouri as an "L1" lake, which are lakes or reservoirs used primarily for public drinking water supply. State designated uses for the lake, which dictate water quality standards, include livestock and wildlife protection, protection of warm water habitat, human health protection, whole body contact recreation, secondary contact recreation, and drinking water supply.

The lake's only water quality impairment is for mercury in fish tissue, as listed on the state's Clean Water Commission Approved 2018 Section 303(d) listed waters (reference (14)). MDNR added the lake to the 303(d) list for the mercury in fish tissue impairment in 2014. Each state is required to submit their 303(d) list, or list of impaired and threatened waters, for EPA approval. At the time this Plan was written, MDNR was in the process of developing their Draft 2020 303(d) List.

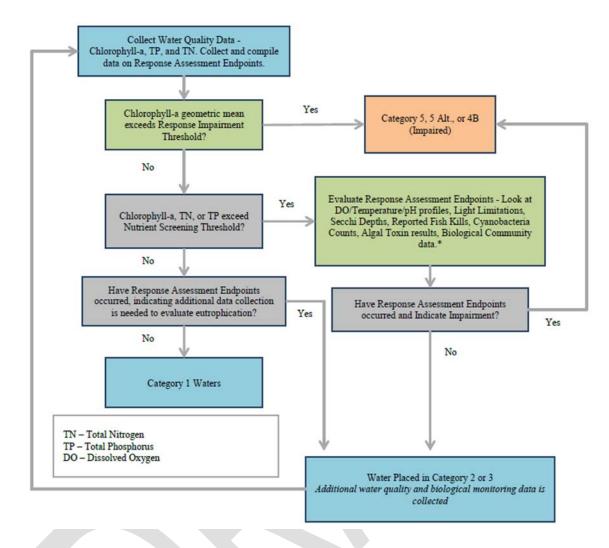
MDNR revised the state's water quality standards on March 31, 2018 (10 CSR 20-7.031). A significant change to the new standards included numeric nutrient criteria for lakes. The purpose of the nutrient criteria standards is to address adverse impacts to a lake's beneficial uses from eutrophication, or the "process by which a body of water becomes enriched in nutrients, such as nitrogen and phosphorus, which stimulate the excessive growth of algae and other plants" and ultimately deplete dissolved oxygen (DO), resulting in a decreased quality of aquatic life (reference (15)).

MDNR published the Nutrient Criteria Implementation Plan (reference (15)) on July 26, 2018 to describe the implementation strategy for the newly established nutrient criteria, which are dependent upon a lake's ecoregion. The lake is located in the Plains ecoregion for the Nutrient Criteria Implementation Plan (Appendix E). Table 6 presents the nutrient criteria for the Plains ecoregion.

MDNR based the decision framework for the nutrient criteria on the EPA's bioconfirmation guiding principles (reference (15)). As described in the Nutrient Criteria Implementation Plan and illustrated in

Figure 2, a lake in Missouri is considered to be impaired for nutrient criteria if it meets the following criteria:

- The geometric mean of Chl-a samples taken between May and September in a calendar year exceeds the respective ecoregion Chla-response impairment threshold value more than once in the most recent three years of data; or
- The geometric mean of either total nitrogen, total phosphorus, or Chl-a samples taken between May and September in a calendar year exceed the respective ecoregion Chl-a response impairment threshold value in the most recent three years of data and one of the five response assessment endpoints are also identified in the same calendar year. The response endpoints include:
 - Occurrence of eutrophication-related mortality or morbidity events for fish and other aquatic organism (Response Endpoint 1)
 - Epilimnetic excursions from DO or pH criteria (Response Endpoint 2)
 - Cyanobacteria counts in excess or 100,000 cells/mL (Response Endpoint 3)
 - o Observed shifts in aquatic diversity attributed to eutrophication (Response Endpoint 4)
 - Excessive levels of mineral turbidity that consistently limit algal productivity during the period of May 1 – September 30 (Response Endpoint 5)


Table 6 Numeric Criteria Threshold Values for the Plains Ecoregion

Chl-a Response Impairment Threshold	Nutrient Screening Thresholds (µg/L)			
(μg/L)	ТР	TN	Chl-a	
30	49	843	18	

MDNR's Nutrient Criteria Implementation Plan (Appendix E) requires the following data requirements to assess a lake against the numeric criteria in 10 CSR 20-7.031(5)(N):

- 1. "At least four samples collected between May 1 and September 30 under representative conditions;
- 2. Each sample must have been analyzed for at least Chl-a, TN, TP, and Secchi depth;
- 3. At least three years of samples (years do not have to be consecutive). Data older than seven years will not be considered, consistent with the Department's Listing Methodogy.
- 4. Data collected under a Quality Assurance Project Plan (QAPP)."

WS #6.

Figure 2 Missouri Ecoregional Numeric Nutrient Criteria Decision Framework based on the Bioconfirmation Approach

5.1.2 Water Quality Data

Water quality data in the lake has been collected over the past two decades by the City and Lakes of Missouri Volunteer Program (LMVP). Table 7 presents a summary of water quality data collected by the City and LMVP.

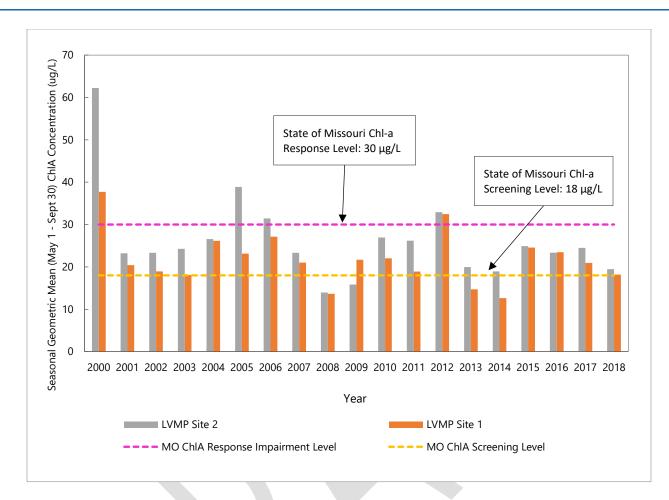
	City of Moberly	Lakes of Missouri Volunteer Program
Sample Parameters	 5-Day Biochemical Oxygen Demand (BOD₅) Alkalinity Ammonia (NH₃) Ammonia, Free Chemical Oxygen Demand (COD) Coliforms Conductivity Copper Dissolved Oxygen (DO) e. Coli Hardness Manganese Nitrate (NO₃) Nitrate, as Nitrogen (NO₃ - N) Nitrite (NO₂) Organics pH Phosphate (PO₄) Temperature Total Dissolved Solids (TDS) Turbidity UV 254 	 Algal data Inorganic Suspended Solids (ISS) Secchi Depth Temperature Total Nitrogen Total Phosphorus Total Chlorophyll-a
Sample Locations	Sites 1 through 8	Sites 1 and 2
Sample Years	2010 through present	2000 through present
QAPP Available for Data Collection?	No	Yes

Table 7 Summary of Sugar Creek Lake Water Quality Data Collection

5.1.2.1 City Water Quality Data

The City collects water quality data seasonally (spring through summer) from eight locations on the lake (Large Figure 16). As of 2019, a QAPP has not been developed for the City's water quality data collection program. Large Table 2 summarizes the water quality data from the eight sample locations. Because a QAPP or another sampling plan was not developed prior to collecting this data, the monitoring parameter data were not collected in a consistent manner and the data does not have clear goals assigned for its use or a formal QA/QC process, implemented through a QAPP or sampling and analysis plan, to protect data quality. Because of this, the data has been and can continue to be somewhat limited in its usefulness for long-term decision-making. However, the data can be used as an indicator of certain issues and has been

used by the City and stakeholders to identify pollutant and water treatment concerns. It is recommended that the City develop a QAPP and conduct further analysis to allow the data collected under a QAPP to inform and support City actions and decisions. Developing a QAPP would support consistency in data collection, clarify the goals around data collection, and help to position the City to apply for funding to implement water quality improvement projects, such as through Clean Water Act Section 319(h) Nonpoint Source Management Program grant funding.

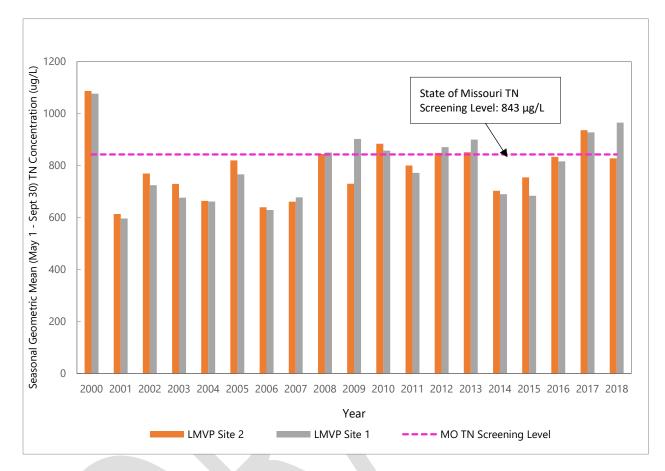

5.1.2.2 LVMP Water Quality Data

The LMVP has collected water quality data in accordance with a MDNR-approved QAPP at two locations on the lake since 2000 (Large Figure 16). LMVP monitoring data is summarized in the following subsections and Large Table 3 and Large Table 4. LVMP's water quality data may be used by MDNR to evaluate whether the lake is impaired for nutrient criteria according to 10 CSR 20-7.031(5)(N). Available lake data indicate the lake is not impaired for nutrient criteria; however, data indicate the lake may be trending toward impairment and could become listed as impaired if measures are not implemented to reduce nutrient loading. The following sub-sections describe lake water quality data with respect to MDNR's nutrient criteria.

Chl-a Response Impairment Threshold

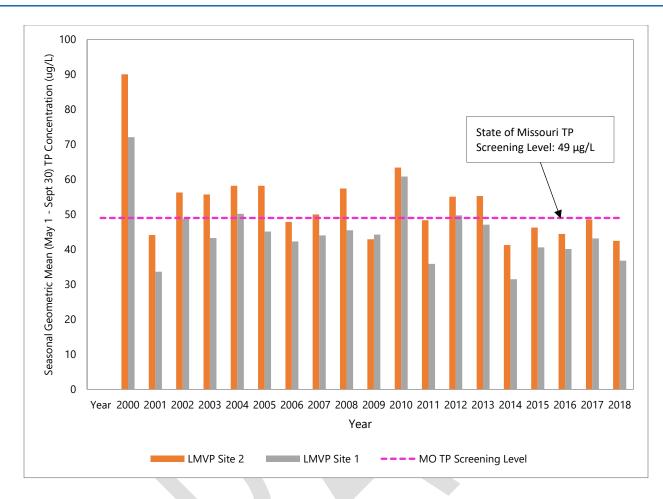
As seen in Figure 3 and Large Table 3, the lake is not considered impaired due to the Chl-a response impairment threshold. Summer geometric means at LVMP Sites 1 and 2 do not exceed the impairment threshold more than once in the most recent three years of data collection.

WS #6.


Figure 3 Chlorophyll-a Seasonal Geometric Mean at LVMP Sites 1 and 2

Nutrient Screening Thresholds

Exceedances of chlorophyll-a, total nitrogen, and total phosphorus nutrient thresholds at LMVP sites 1 and 2 during the most recent three years of data collection include:


- **Chlorophyll-a:** LVMP Site 1 and Site 2 annual geometric means exceed the nutrient screening threshold from 2016 through 2018 (Figure 3 and Large Table 3).
- **Total nitrogen:** LVMP Site 1 annual geometric means exceed the impairment threshold in 2017 and 2018. LVMP Site 2 annual geometric means exceed the nutrient screening threshold in 2017 (Figure 4 and Large Table 3).
- **Total phosphorus:** LVMP Site 1 and Site 2 annual geometric means do not exceed the impairment threshold during the most recent three years of data collection (Figure 5 and Large Table 3).

According to MDNR's Nutrient Criteria Implementation Plan (Section 5.1.1), the lake would be considered impaired for nutrient criteria if one of the five response assessment endpoints are identified in the same

calendar year that a nutrient screening threshold is exceeded. As discussed in the following sections, available data for Response Endpoints 1-5 do not indicate impairment.

Figure 4 Total Nitrogen Seasonal Geometric Mean at LVMP Sites 1 and 2

Figure 5 Total Phosphorus Seasonal Geometric Mean at LVMP Sites 1 and 2

Response Endpoints

Available lake data from MDNR and the LVMP do not indicate that exceedances of nutrient criteria response endpoints have been identified in the previous three years of water quality data collection. A summary of the MDNR's Listing Methodology is provided in the Nutrient Criteria Implementation Plan (Appendix E), available data for each response endpoint (Section 5.1.1, also provided in Large Table 3), includes the following:

- Response Endpoint 1: This endpoint criteria is exceeded if two or more fish kills have occurred within the last three years of available data or there is one large (>100 fish and covering more than ten percent of the lake area) fish kill documented to be caused by DO excursions, pH, algal blooms, or the toxins associated with algal blooms (10 CSR 20-7.031(5)(N)6.A). Available fish mortality reports from the MDC indicate no fish kills have occurred in the lake since the MDC began fish mortality data collection (references (16), (17), (18), (19), (20), (21), (22), (23), (24), (25))
- Response Endpoint 2: This endpoint criteria will be evaluated further if the following occur: if more than 10% of the epilimnetic DO measurements during the May and September are below 5.0 mg/L minimum to protect aquatic life or more than 10% of the pH measurements are outside

62

the 6.5 to 9.0 range to protect aquatic life, the binomial probabilities will be used to determine if the criterion have been exceeded [10 CSR 20-7.031(5)(N)6.B]. Data collected by the City, which has not been collected under a QAPP, indicate DO and pH data do not exceed Response Endpoint 2 (Table 8 and Large Table 2). Because this data was not collected under a QAPP, this data is only useful as an indicator and would not be used for endpoint assessment by MDNR.

- Response Endpoint 3: This endpoint criteria is exceeded if the following algal toxin value thresholds are exceeded: microcystin 4.0 ug/L, cylindospermopsin 8.0 ug/L, anaytoxin-a 8.0 ug/L, and saxitoxin 4.0 ug/L. These toxin levels are associated with a total toxigenic algal species cell count greater than or equal to 100,000 cell/mL [10 CSR 20-7.031(5)(N)6.C]. Data collected by the LMVP, summarized in Table 9, indicate algal toxin thresholds are not exceeded. Additional algal data, collected by the City is summarized in Large Table 5.
- Response Endpoint 4: This endpoint criteria is exceeded if MDNR finds evidence in biological shifts in fish or invertebrate communities related to eutrophication [10 CSR 20-7.031(5)(N)6.D]. MDNR will request aquatic community data from multiple sources to perform an evaluation of this endpoint. MDC provided the City with fish sampling population statistics from 2001, 2005, 2009, 2014 (reference (26)); the information provided in these statistics does not indicate this endpoint criteria is exceeded.
- Response Endpoint 5: This endpoint criteria is exceeded if the yearly average Secchi depth is below the applicable ecoregional value (0.6 meters for the Plains ecoregion). Additional analysis of average Chl-a/TP ratios will also be conducted before determining impairment status. Unless attributed to other physical factors, Chl-a/TP ratios at or below 0.15 and an ISS value greater than or equal to 10 mg/L as determined by yearly means will serve as an indicator of excessive mineral turbidity and constitute evidence of impairment [10 CSR 20-7.031(5)(N)6.E]. As seen in Large Table 4, available LVMP data does not indicate this endpoint criteria is exceeded.

DO Response Endpoint	pH Response Endpoint	Percent of Samples in Exceedance Response Endpoint		
	-		DO, in situ	рН
10% of samples < 5.0 mg/L	10% of samples <6.5 or >9.0		1.3%	0%

Table 8 City DO and pH Data Summary for Sugar Creek Lake

			in Threshold µg/L)	Cylindrospermopsin Thresholo (8.0 μg/L)	
LMVP Site Date Number		Sample Result (µg/L)	> Endpoint Threshold? (Y/N)	Sample Result (µg/L)	> Endpoint Threshold? (Y/N)
1	5/18/2018	<0.15	Ν	<0.05	Ν
2	6/6/2018	<0.15	Ν	<0.05	Ν
2	6/26/2018	<0.15	Ν	<0.05	Ν
2	7/18/2018	<0.15	N	< 0.05	Ν
2	9/2/2018	<0.15	Ν	<0.05	N
2	9/18/2018	<0.15	Ν	< 0.05	Ν
2	10/1/2018	0.36	N	<0.05	Ν

 Table 9
 Lakes of Missouri Volunteer Program 2018 Algal Data

5.2 Sediment Quality

Lake sedimentation from external (i.e., lake inputs) and internal (i.e., lake bottom sediment) sources is anticipated to be a significant source of pollutants in the lake, particularly nutrients and organics. The purpose of Strategy 5, Objective 1 of Goal 1 of this Plan is to determine potential sources of nutrient and sediment loads to the lake through data collection and analysis (Table 1). Section 6.3 of this Plan presents additional information regarding the effects of sedimentation on lake volume and yield.

Sediment deposition from erosion prone areas and high velocity streams, such as ravines near the lakeshore, transports pollutants into the lake, which ultimately end up in the water column and lake bottom sediment. Large Figure 7, discussed in Section 4.3.2, displays the City's priority areas for erosion inspections. Large Figure 17 presents an analysis of average growing season turbidity in the lake, which indicates areas of significant sedimentation loading from external sources, such as ravines.

Lake bottom sediment serves as a source and sink for pollutants in the lake's water column. The sediment serves as a pollutant source when lake turnover, which occurs each spring and fall, has the potential to significantly re-suspend pollutants from the upper lake bottom sediment layers into the water column. Suspension of sediment likely has an adverse impact on surface water concentrations of nutrients, turbidity, and total suspended solids during these times. During lake stratification in summer and winter, lake bottom sediment serves as a pollutant sink once sediment suspended in the water column begins to settle. Large Table 6 presents a summary of sediment samples from the LVMP sample locations 1 and 2 in May 2017. Sediment samples were not collected under a QAPP.

6.0 Water Supply

According to the 2019 Census of Missouri Public Water Systems (reference (27)), the lake supplies drinking water for 13,974 people at an average daily demand in of 1.15 MGD to the City. From 2001 to 2017, the City used an average of 473 million gallons per year (1.30 MGD). Usage during this timeframe peaked in 2004 at 579 MGY (1.59 MGD) and was at its lowest in 2009 (393 MGY, 1.08 MGD). The lake does not supply water to areas outside City limits, but does serve as an emergency supply for both the Thomas-Hill Public Water Supply District (THPWD), which serves a population of 10,315 (reference (28)), and the Moberly Area Correctional Center. The Clarence Cannon Wholesale Water Commission, which retrieves raw water from the North Fork of the Salt River (Mark Twain Lake), supplies water for both the THPWD and Moberly Area Correctional Center.

6.1 Water Treatment

The City's WTP intake is located near the southeast corner of the lake (Large Figure 1 and Large Figure 16). The WTP has a capacity of 5 MGD. The City's WTP processes include chemical addition (rapid mix), coagulation, flocculation, sedimentation, filtration, and disinfection. Treated water is either immediately routed to the City's distribution system via a wet well, or is stored in clearwells prior to distribution. WTP improvements were constructed in 2006; the significant components included the raw water intake, raw water pump station upgrades, backup generator, carbon silo, caustic soda feed equipment, supervisory control and data acquisition upgrades, covered secondary basins, mixed media filter controls, new high service main leaving the City's boundary, and meters on the raw water and high service mains. The water treatment system improvements and ultrasonic algae treatment units (discussed in Section 6.2) have significantly reduced DBP formation in treated drinking water, an achievement of the DBP reduction goal of the 2004 Plan.

Figure 6 Moberly Water Treatment Plant Intake

6.2 Algae Treatment

Nutrients in the lake, particularly nitrogen and phosphorus, have contributed to algal blooms in that present treatment challenges for the City's WTP. The City has not had a blue-green algae bloom at the lake, and has gathered algae speciation data from the lake (Large Table 5). However, the lake does seasonally have algae blooms of nuisance algae that has caused water treatment challenges, such as the formation of DBPs, and safety concerns at boat ramps and docks because of slippery conditions. The City installed two solar-powered ultrasonic algae controller units in 2017, and a third unit in 2019, to reduce the propagation of algae (Figure 7). The City removes the algae controller units during the winter months and redeploys them each spring. These units have proved effective in significant reduction of algae and associated impacts, including the reduction of DBPs

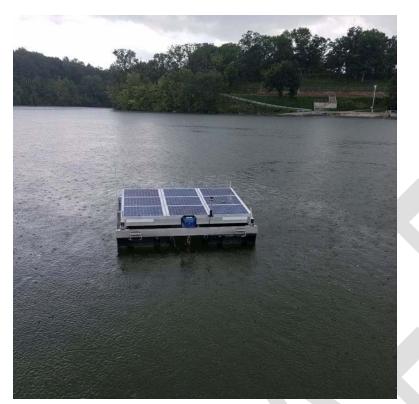


Figure 7 Ultrasonic Algae Controller Unit in Sugar Creek Lake

6.3 Bathymetric and Lake Yield Analyses

The following sub-sections present USGS and MDNR studies of changes in lake's volume. Section 6.3.1 summarizes USGS's 2018 Bathymetric Survey findings and Section 6.3.2 summarizes MDNR's 2019 Firm Yield Study.

6.3.1 USGS Bathymetric Survey and Change Analysis

The USGS completed a study of the lake in 2018 to analyze the bathymetric change due to erosion and deposition since the previous survey in 2003. The 2018 survey concluded that at the spillway elevation of 746.8 feet, the surface area is 332 acres and the capacity is 5,020 acre-feet. The study found the lake to have a similar surface area to the 2003 survey, but to have a decreased capacity of 230 acre-feet from the 2003 survey due to sediment deposition of approximately 1 – 1.5 feet across the lake bottom. Appendix C provides the USGS 2018 survey report, which includes a change analysis figure that depicts bathymetric change between the 2003 survey and 2018 survey due to erosion and sediment deposition.

6.3.2 MDNR Lake Yield Study

MDNR completed a water supply yield study of the lake for the City in June 2019 to provide an updated understanding of the lake's capacity to meet the City's water demands during drought of record (1951-1960) conditions. The most recent yield study of the lake occurred in 2005. The 2019 study used USGS bathymetry survey data and Reservoir System Simulation (HEC-ResSim), a simulation program developed by the U.S. Army Corps of Engineers, to predict the lake's yield during drought of record conditions for an

estimated City water demand of 1.33 MGD, the City's average demand between 1992 and 2017. MDNR's 2019 Lake Yield Study report is included in Appendix A.

The study included two scenarios to account for the effects of seepage from the lake's dam abutment on estimated yield during drought conditions. MDNR estimated that 1 MGD of lake volume is lost to seepage at full pool, or a spillway elevation of 756.8 feet. Figure 8 displays the seepage bypass from the abutment of the dam into the spillway.

The first scenario, Scenario 1, assumed no seepage throughout the model run while the second scenario accounted for an estimated seepage range of 750 gpm at full pool to 0 gpm when the lake is empty. The first scenario concluded the lake will yield 1.44 MGD during the 10 year drought of record timescale, thus meeting the estimated 1.33 MGD demand. Although Scenario 1 determined that Sugar Creek Lake could meet the 1.33 MGD demand over ten years during an extended drought, the study noted that a total of 314 out of 3,560 days of the model run resulted in near insufficient water supply conditions. The second scenario, Scenario 2, concluded the lake's estimated yield, considering seepage, at 1.17 MGD is not sufficient to meet the 1.33 MGD demand.

The yield study also evaluated the lake's storage due to sedimentation from 2003 to 2033. The study included an analysis of the effects of sedimentation, assuming seepage, using storage-elevation curves developed from the 2003 and 2018 bathymetric surveys. For this analysis, the modelers assumed the 2003-2018 storage curve, a loss of 4.6%, would also occur from 2018 to 2033. The analysis determined that an additional 12 days of insufficient yield resulted from sedimentation between 2003 and 2033.

Figure 8 Seepage Bypass from the Sugar Creek Lake Dam to the Lake Spillway

MDNR's study highlights the significant effects of sedimentation and seepage on available water supply volume in the lake, including the fact that a portion of the intake is estimated to be buried under

approximately 12 feet of sediment. The study recommends the City take steps to reduce volume lost to seepage and create a management plan to ensure water supply in the event the intake must be moved to a higher elevation. A third recommendation of the study is to install USGS level gages upstream of the lake and at the intake location to more accurately estimate inflow to the lake and lake levels. The City is currently taking steps to evaluate and construct an engineered solution to significantly reduce the seepage in the dam abutment.

6.4 Summary of Water Supply Impacts

As discussed in Section 6.2 through Section 6.3.2, significant water supply impacts for the lake include nutrient loading and sedimentation. In summary, actions taken by the City to address adverse water supply impacts include, but are not limited to, WTP upgrades, installation of the ultrasonic algae controller units, design of a project to reduce seepage in the dam abutment, and implementation of the goals, objectives, and strategies identified in this Plan.

7.0 Proposed Implementation

As discussed in Section 1.2, the purpose of this Plan is to identify the goals, objectives, and strategies for the lake and provide stakeholders with a guidance document for the lake's long-term protection as the drinking water source for the City. Table 1 through Table 3 in Section 2.3.1 outline the specific strategies developed for each objective and goal and the proposed implementation schedule for each strategy.

As seen in Table 1 through Table 3, the implementation timeline for the each strategy varies; the City began to implement several strategies before the finalization of this Plan, while the implementation of many other strategies is in early stages. Two fundamental strategies to accomplish the goals of this Plan include establishing two stakeholder groups that meet regularly (Objective 1, Strategy 3 of Goal 3) and further developing partnerships for implementation opportunities (Objectives 1 and 2, Strategy 4 of Goal 1). The City intends to proceed with these engagement strategies as a foundation for the implementation of the technical and data related strategies. The City intends to review and update this Plan once every five years in order to revise and implement new strategies to achieve the City's goals for the lake, watershed, and long-term water supply.

8.0 References

1. **Missouri Department of Conservation.** Missouri's Northern Plains. *Missouri Conservationist Magazine*. October 2, 2005, October 2005.

2. Decker, Wayne L. Climate of Missouri. s.l. : University of Missouri, Missouri Climate Center.

3. **National Oceanic and Atmospheric Administration.** Data Tools: 1981-2010 Normals. [Online] [Cited: May 3, 2019.] https://www.ncdc.noaa.gov/cdo-web/datatools/normals.

4. **U.S. Climate Data.** Climate Moberly - Missouri and Weather averages Moberly. *Temperature - Precipitation - Sunshine - Snowfall.* [Online] 2019. [Cited: May 3, 2019.] https://www.usclimatedata.com/climate/moberly/missouri/united-states/usmo0595.

5. **Midwestern Regional Climate Center.** Precipitation Summary for Station USC00235671 - Moberly, MO. *Midwest Climate: Climate Summaries*. [Online] 2019. [Cited: May 16, 2019.] https://mrcc.illinois.edu/mw_climate/climateSummaries/climSummOut_pcpn.jsp?stnld=USC00235671.

6. **Gentile, Richard and Thompson, Thomas.** Paleozoic Succession in Missouri Part 5: Pennsylvanian Subsystem. *Report of Investigations No. 70.* s.l. : Missouri Department of Natural Resources; Missouri Geological Survey, 2004.

7. **Jeje, Yetunde.** Southern Alberta Landscapes: Meeting the Challenges Ahead - Export Coefficients for Total Phosphorus, Total Nitrogen and Total Suspended Solids in the Southern Alberta Region. s.l. : Province of Alberta, 2006.

8. **Barr Engineering Co.** Detailed Assessment of Phosphorus Sources to Minnesota Watersheds – Non-Agricultural Rural Runoff Technical Memo to Minnesota Pollution Control Agency. December 17, 2003.

9. —. Nondegradation Load Assessment Report. Prepared for City of Bloomington. December 2007.

10. Wenck. Why is Watershed Phosphorus Loading so Stubbornly Persistent? June 14, 2018.

11. **Scott County, Minnesota.** Section 3: Water Quality Assessment. *Credit River Protection Plan.* [Online] June 2011. https://www.scottcountymn.gov/DocumentCenter/View/1243/Section-3---Water-QualityAssessment-PDF.

12. **McFarland, Anne and Hauck, Larry.** Determining Nutrient Contribution by Land Use for the Upper North Bosque River Watershed. *Lake Waco/Bosque River Watershed Initiative Report.* January (Revised May 1998) 1998.

13. **U.S. Environmental Protection Agency.** Onsite Wastewater Treatment Systems Manual (EPA/625/R-00/008). February 2002.

14. Missouri Department of Natural Resources. 2018 Section 303(d) Listed Waters. 2018.

15. —. Nutrient Criteria Implementation Plan. July 27, 2018.

16. **Missouri Department of Conservation.** Missouri Pollution and Fish Kill Investigations 2003. April 2006.

17. —. Missouri Pollution and Fish Kill Investigations 2004. December 2006.

18. —. Missouri Pollution and Fish Kill Investigations 2005. July 2007.

19. —. Missouri Pollution and Fish Kill Investigations 2006. March 2008.

20. —. Missouri Pollution and Fish Kill Investigations 2007 - 2011. August 2013.

21. —. Missouri Pollution and Fish Kill Investigations 2012 and 2013. March 2014.

22. —. Missouri Pollution and Fish Kill Investigations 2014. November 2015.

23. —. Missouri Pollution and Fish Kill Investigations 2015. March 2016.

24. —. Missouri Pollution and Fish Kill Investigations 2016. March 2017.

25. —. Missouri Pollution and Fish Kill Investigations 2017. April 2018.

26. —. Sugar Creek Lake Sampling Summary: fish populations and the environmental/water quality (attachment to email to Barr Engineering Co.). February 28, 2019.

27. Missouri Department of Natural Resources. Census of Missouri Public Water Systems 2019. 2019.

28. **Thomas Hill PWSD.** 2018 Annual Water Quality Report: Public Water System ID Number: MO2024504. [Online] 2019. https://www.thomashillpwsd.com/2018-annual-report.

29. **U.S. Department of Agriculture Soil Conservation Service.** Soil Survey of Randolph County, Missouri. June 1989.

Large Tables

Soil Unit	Soil Type	Drainage Class	Farmland Classification	Hydrologic Soil Group ⁽¹⁾	Soil Notes ⁽²⁾
60058	Bethesda channery silt loam, 20-70% slopes	Well drained	Not prime farmland	В	 Occurs in areas of mine spoil at sites of past surface mines High soil acidity (generally supports poor-quality timbers and shrubs)
50021	Calwoods silt Ioam, 2-5% slopes, eroded	Somewhat poorly drained	Not prime farmland	D	 Natural fertility is low (mostly used for hay, pasture, or timber) High shrink-swell potential Seasonal perched water table is common Unsuited for septic system absorption fields due to wetness and low permeability
30068	Gorin silt loam, 5- 9% slopes, eroded	Somewhat poorly drained	Farmland of statewide importance	С	 Natural fertility is low (mostly used for hay, pasture, or timber) High shrink-swell potential Seasonal perched water table is common Unsuited for septic system absorption fields due to wetness and low permeability
50024	Gosport silt loam, 14-30% slopes, eroded	Moderately well drained	Farmland of statewide importance	D	 Most common soil type adjacent to lake Weathered bedrock 20-40 inches below ground surface limits rooting Natural fertility is low (mostly used for woodland or pasture) High shrink-swell potential Unsuited for septic system absorption fields due to slope and limited depth to bedrock
50008	Keswick silt loam, 5-9% slopes, eroded	Moderately well drained	Not prime farmland	D	 Keswick silt loam (all slopes): Natural fertility is medium (mostly used for hay, pasture,
50030	Keswick silt loam, 9-20% slopes, eroded	Somewhat poorly drained	Not prime farmland	D	 cultivated crops, or timber) High shrink-swell potential Seasonal perched water table is common Unsuited for septic system absorption fields due to wetness and slope

Large Table 1 Predominant NRCS Soil Types within Sugar Creek Lake Watershed

Soil Unit	Soil Type	Drainage Class	Farmland Classification	Hydrologic Soil Group ⁽¹⁾	Soil Notes ⁽²⁾
60022	Leonard silt loam, 1-6% slopes, eroded	Poorly drained	Prime farmland if drained	C/D	 Natural fertility is medium (mostly used for hay, cultivated crops, or pasture) High shrink-swell potential Seasonal perched water table is common Unsuited for septic system absorption fields due to wetness and low permeability
50058	Mexico silt loam, 0-2 % slopes	Poorly drained	Not prime farmland	D	Mexico silt loam (all slopes):Natural fertility is medium
50059	Mexico silt loam, 1-4% slopes, eroded	Poorly drained	Not prime farmland	D	 (mostly used for hay, cultivated crops, or pasture) High shrink-swell potential Seasonal perched water table is common Unsuited for septic system absorption fields due to wetness and low permeability
66099	Piopolis silty clay loam, 0-2% slopes, frequently flooded	Poorly drained	Not prime farmland	C/D	 Natural fertility is medium (mostly used for hay, cultivated crops, or pasture) Moderate shrink-swell potential Seasonal perched water table is common Unsuited for septic system absorption fields due to wetness and low permeability
50012	Putnam silt loam, 0-1% slopes	Poorly drained	Not prime farmland	D	 Natural fertility is medium (mostly used for hay, cultivated crops, or pasture) High shrink-swell potential Seasonal perched water table is common Unsuited for septic system absorption fields due to wetness and low permeability

(1) A = low runoff potential; B = moderately low runoff potential; C = moderately high runoff potential; D = high runoff potential

(2) Source: reference (29)

								Sample Loca	ations					
Sample Parameter	Units	Year		Locatio	on 1		Number of	Location 2			Nisseels on a f	Loca	tion 3	1
			Number of Samples	Avg	Min	Мах	Number of Samples	Avg	Min	Max	Number of Samples	Avg	Min	Max
		2010	11	105	94	124	11	98.5	84	116	11	97	82	116
		2011	12	105	90	120	12	102	88	116	12	100	84	110
Alkalinity	mg/L	2012	13	110	92	132	13	106	84	120	13	104	80	120
		2017	17	110	66	136	24	158	82	280	15	111	88	128
		2018	6	92	60	112	6	97.0	90	110	6	96	82 1 84 1 80 1 90 1 0.17 0 0.17 0 0.17 0 0.17 0 0.17 0 0.17 0 0.17 0 0.17 0 0.00 0 0.17 0 0.00 0 0.00 0 1.4 0 3.0 1 3.0 1 3.0 1 3.0 1 1.1.4 2 1.1.4 2 1.1.4 2 1.1.4 2 1.1.4 2 1.1.4 2 1.1.4 2 1.1.4 2 1.1.4 2 0.0 2 0.0 2 0.0 2 0.0 2	104
		2010	8	0.59	0.29	0.93	8	0.35	0.21	0.60	8	0.37	0.17	0.7
		2011	6	0.43	0.36	0.54	6	0.26	0.19	0.35	6	0.22	0.17	0.3
Ammonia (NH ₃) ⁽¹⁾	mg/L	2012	5	0.48	0.19	0.83	5	0.27	0.14	0.40	5	0.21	0.06	0.3
	iiig/L	2013	6	0.44	0.40	0.55	6	0.33	0.23	0.49	6	0.32	0.17	0.5
		2017	23	0.151	0.0	0.94	32	0.19	0.0	1.13	20	0.07	0.00	0.4
		2018	6	0.143	0.02	0.50	6	0.09	0.01	0.14	6	0.08	0.00	0.2
		2010	7	3.7	2.6	5.2	6	2.70	1.4	3.2	6	2.1	1.4	2.5
Biochemical oxygen demand		2011	3	7.3	4.0	13.0	1	14.0	14.0	14.0	2	9.5	4.0	15.0
(BOD ₅)	mg/L	2012	4	3.5	2.0	4.0	2	3.70	3.3	4.0	3	4.2	3.0	5.0
		2013	6	5.7	3.4	13.0	3	4.20	2.5	7.0	2	7.5	3.0	12.0
		2017	7	15.2	0.2	80.0	7	21.30	0.4	74.0	4	16.7	0.7	61.0
		2010	8	21.7	15.3	28.2	8	22.8	8.8	35.4	8	18.5	13.2	22.6
Chemical overand demand		2011	6	18.7	14.0	24.0	6	15.5	7.4	22.1	6	16.8	11.4	24.0
Chemical oxygen demand (COD)	mg/L	2012	5	37.8	18.5	73.0	5	25.1	11.6	55.0	5	24.5	12.2	52.0
		2013	6	35.1	25.6	69.3	6	27.9	11.0	60.4	6	29.3	16.8	69.4
		2017	7	21.3	10.0	34.0	9	17.1	1.0	35.0	9	14.4	4.0	23.0
		2010	4	1918	412	>2419.6	4	2311	1986	>2419.6	4	1566	655	>2419.6
		2011	6	1163	10	>2419.6	6	963	4	>2419.6	6	645	12	>2419.6
Coliforms	MPN	2012	4	1968	1300	>2419.6	4	1960	579	>2419.6	4	902	205	>2419.6
		2013	6	1941	425	>2419.6	6	1146	166	>2419.6	6	1263		>2419.6
		2017	6	1737	706	3873	7	2516	159	>5794	5	1143		4611
- (1)		2017	17	4.1	0.0	14.0	23	3.48	0.0	18.0	15	1.0		9.0
Copper ⁽¹⁾	μg/L	2018	6	1.7	0.0	8.0	6	0.50	0.0	2.0	6	1.2	0.0	2.0
Dissolved oxygen, initial		2010	8	8.3	7.7	8.8	8	8.30	7.8	8.8	8	8.2	7.2	8.7
		2011	4	8.6	7.8	9.7	4	8.60	7.8	9.6	4	8.7	8.0	9.6
Dissolved oxygen, initial (in situ)	mg/L	2012	4	8.6	7.9	9.4	4	8.70	8.4	9.2	4	8.9	8.5	9.2
(ur situ)		2013	5	8.5	7.2	9.8	5	8.80	7.5	9.8	5	8.9	7.5	9.8
		2017	3	9.5	9.2	9.6	6	9.20	8.8	9.6	2	9.4	9.2	9.6
		2010	8	6.6	4.9	8.0	8	6.90	5.5	7.8	8	7.2	6.4	7.7
Dissolved oxygen, final		2011	4	7.8	6.5	9.1	4	8.00	7.0	8.8	4	8.0	7.2	8.9
(in situ)	mg/L	2012	4	6.8	6.7	7.1	4	7.00	6.4	7.6	4	7.7		8.4
× ,		2013	5	5.5	1.7	8.2	5	7.10	5.2	8.8	5	6.9		8.9
		2017	3	8.1	6.0	9.4	6	7.60	4.9	9.0	2	7.7		9.5
		2010	8	8.2	6.7	9.3	8	8.20	6.6	9.3	8	8.4		9.5
		2011	6	8.6	6.8	9.8	6	8.80	7.5	10.2	6	9.2		10.1
Dissolved oxygen, laboratory	mg/L	2012	5	8.9	8.2	10.4	5	9.40	8.3	10.3	76	9.8		11.2
		2013	6	8.5	6.6	9.6	6	9.00	7.4	10.8		9.6		12.0
		2017	7	10.3	8.5	12.2	8	10.3	9.1	11.7	5	11.0		11.9
		2010	11	109	92	122	11	104	84	124	11	102		114
		2011	12	121	106	152	12	119	106	138	12	116	-	130
Hardness	mg/L	2012	13	126	108	142	13	124	98	136	13	123		136
		2017	17	126	96	158	23	175	96	328	15	125	96	160
		2018	6	107	72	138	6	113	100	136	6	110	100	130
		2010	11	0.29	0.14	0.45	11	0.15	0.08	0.27	11	0.13	0.05	0.27
Manganese	mg/L	2011	12	0.24	0.08	0.41	12	0.14	0.07	0.36	12	0.11	0.06	0.20
		2012	13	0.27	0.14	0.45	13	0.15	0.11	0.22	13	0.11	0.06	0.17
Mangangeo filtered	ma /l	2017	17	0.082	0.009	0.214	24	0.096	0.010	0.405	15	0.028	0.006	0.057
Manganese, filtered	mg/L	2018	6	0.033	0.004	0.068	6	0.010	0.004	0.016	6	0.012	0.005	0.018
		2017	17	0.329	0.139	0.883	24	0.235	0.059	0.758	15	0.131	0.077	0.198
Manganese, unfiltered	mg/L	2018	6	0.295	0.133	0.839	6	0.103	0.058	0.175	6	0.096		0.178
Nitrate, as nitrogen											-			
(NO ₃ - N)	mg/L	2017	7	2.50	2.20	3.00	9	5.00	0.10	16.00	5	1.800	1.40	2.00
Nitrite $(NO_2)^{(1)}$	ma //	2017	10	0.024	0.000	0.128	13	0.030	0.000	0.210	9	0.007	0.000	0.023
Nitrite $(NO_2)^{\circ}$	mg/L	2018	6	0.032	0.000	0.177	6	0.030	0.000	0.145	6	0.026	0.000	0.141
		2010	12	0.227	0.162	0.461	12	0.201	0.159	0.243	12	0.194	0.166	0.240
Organics	mg/L	2011	12	0.145	0.110	0.206	12	0.141	0.121	0.206	12	0.137	0.118	0.206
Organics			12	0.152		0.260	12	0.134	0.118	0.174	12	0.127	0.098	0.160

								Sample Loca	tions					
Sample Parameter	Units	Year		Locatic	on 1			Location 2				Locat	tion 3	
		····	Number of Samples	Avg	Min	Мах	Number of Samples	Avg	Min	Max	Number of Samples	Avg	Min	Max
		2010	20	7.7	7.1	8.2	20	7.95	7.0	8.8	20	8.1	7.4	8.9
		2011	18	7.9	7.3	8.6	18	8.07	7.5	8.6	18	8.2	7.5	8.7
pН	S.U	2012	18	7.9	7.5	8.4	18	8.15	7.7	8.6	18	8.3	7.6	8.8
рп	3.0	2013	6	7.8	7.5	8.1	6	8.17	7.8	8.9	6	8.2	7.8	8.7
		2017	24	8.2	7.3	8.6	32	7.94	7.4	9.0	20	8.3	7.7	9.0
		2018	6	7.9	7.8	8.1	6	8.14	7.9	8.6	6	8.2	7.8	8.6
Phosphate (PO₄)	mg/L	2017	23	0.316	0.00	2.79	29	0.83	0.02	4.30	19	0.10	0.01	0.50
	IIIg/L	2018	6	0.402	0.06	1.10	6	0.05	0.01	0.10	6	0.05	0.03	0.06
Specific conductivity	μmhos	2017	14	268.9	146	360	17	391	192	860	12	233	151	296
(microohms)	μπποs	2018	6	220.2	141	279	6	224	204	254	6	225	201	263
		2010	8	20	9	30	8	20.1	10	29	8	20	10	29
		2011	6	20	15	27	6	19.8	14	28	6	20	14	28
Temperature	Deg. C	2012	5	19	12	29	5	19.4	11	30	5	20	11	30
		2013	6	20	8	25	6	19.7	8	25	6	20	8	25
		2017	6	9	7	13	8	8.80	5	18	4	8	6	9
Total dissolved solids (TSS)	mg/L	2017	14	177	91	243	17	258	127	500	12	158	101	199
Total dissolved solids (155)	mg/L	2018	6	114.1	0.36	178	6	151	138	171	6	125	0	166
Total suspended solids (TSS)	mg/L	2010	1	38	38	38	1	12.0	12	12	1	8.0	8.0	8.0
Total suspended solids (155)	IIIg/L	2017	7	29	15	52	9	121	1	665	5	14.4	7.0	22.0
		2010	12	28.7	14.1	38.9	12	15.0	8.9	25.5	12	11.7	5.7	27.1
		2011	12	28.9	6.2	58.8	12	14.0	7.9	20.6	12	10.8	7.1	16.7
Turbidity	NTU	2012	13	38.9	10.5	73.6	13	17.9	10.1	27.7	13	11.0	4.7	21.7
		2017	17	56.6	13.7	400	24	92.0	2.7	1310	15	12.4	8.6	26.3
		2018	6	99.8	17.4	340	6	9.91	5.31	13.2	6	6.9	4.8	9.6
UV254	cm⁻¹	2017	17	0.22	0.09	0.66	24	0.24	0.07	0.70	15	0.12	0.09	0.18
07234	cm	2018	6	0.24	0.11	0.56	6	0.11	0.10	0.13	6	0.10	0.10	0.11

						Samp	le Locat	tions					
Sample Parameter	Units		Location	4			Locatio	on 5			Locatio	n 6	
		Number of Samples	Avg	Min	Мах	Number of Samples	Avg	Min	Мах	Number of Samples	Avg	Min	Мах
		11	98	82	122	11	94	80	108	11	97	82	114
		12	102	86	118	12	101	82	116	12	102	84	114
Alkalinity	mg/L	13	108	90	120	13	106	90	120	13	106	90	120
		15	109	88	120	15	109	88	122	19	110	88	124
		6	96	90	110	6	97	90	106	6	95	88	112
		8	0.37	0.16	0.71	8	0.36	0.12	0.73	8	0.37	0.15	0.71
		6 5	0.23	0.15	0.38	6 5	0.26	0.15	0.45	6 5	0.26	0.16	0.37
Ammonia (NH ₃) ⁽¹⁾	mg/L	6	0.22	0.08	0.35 0.48	6	0.21 0.30	0.06 0.17	0.37 0.50	6	0.23	0.06	0.32
		20	0.05	0.01	0.12	20	0.05	0.00	0.50	27	0.06	0.00	0.22
		6	0.06	0.00	0.15	6	0.06	0.00	0.15	6	0.16	0.00	0.80
		5	2.4	1.2	3.0	5	6.5	1.5	24.0	4	3.1	2.5	3.8
		2	8.0	3.0	13.0	2	8.0	3.0	13.0	2	7.0	3.0	11.0
Biochemical oxygen demand (BOD ₅)	mg/L	2	3.8	3.6	4.0	2	4.1	4.0	4.2	1	2.4	2.4	2.4
(BOD ₅)		3	5.3	2.8	10.0	3	2.5	2.0	3.0	3	3.7	3.0	5.0
		5	3.2	1.0	7.0	5	2.8	0.9	4.0	4	3.1	2.0	6.0
		8	19.7	9.3	38.0	8	19.0	12.1	24.3	8	19.3	9.0	30.0
Chemical oxygen demand		6	19.2	15.4	22.3	6	17.8	11.6	20.7	6	17.1	12.5	27.0
(COD)	mg/L	5	28.2	9.9	58.0	5	28.0	10.1	55.0	5	27.4	10.1	54.0
		6	28.9	19.2	54.7	6	26.0	16.4	52.7	6	22.8	0.0	58.9
		5	15.8	10.0	29.0	5	17.2	9.0	23.0	8	21.3	3.0	56.0
		4	1772	1046	>2419.6	4	1585	298	>2419.6	4	2045	921	>2419.6
		6	733	2	>2419.6	6	620	14	>2419.6	5	887	64	>2419.6
Coliforms	MPN	3	1785	517	>2419.6	4	1026	248	>2419.6	4	1117	135	>2419.6
		6	1516	22	>2419.6	6	1124	54	>2419.6	6	1262	46	>2419.6
		5 15	531	122	1421	5	456	64	1430	6	479	5	1333.0
Copper ⁽¹⁾	μg/L	6	1.5 0.5	0.0	5.0 1.0	15 6	1.2 0.7	0.0	5.0 3.0	18 6	2.9 3.5	0.0	12.0 7.0
		8	8.3	7.7	8.8	8	8.4	7.7	8.8	8	8.5	7.7	9.2
		4	8.7	8.0	9.7	4	8.2	7.0	9.6	4	8.2	7.0	9.6
Dissolved oxygen, initial	mg/L	4	8.8	8.4	9.2	4	8.8	8.4	9.1	4	8.6	8.3	9.0
(in situ)		6	8.8	7.5	9.8	4	8.8	7.6	9.9	5	8.8	7.5	9.8
		4	10.1	9.7	10.5	5	10.3	9.9	10.7	6	9.7	8.7	10.4
		8	7.4	6.3	8.2	8	7.3	6.4	7.8	8	7.2	6.5	7.9
Dissolved oxygen, final		4	8.0	7.2	8.6	4	7.6	7.0	8.4	4	7.6	6.9	8.6
(in situ)	mg/L	4	7.3	6.5	8.0	4	7.4	6.7	8.2	4	7.2	5.8	8.0
		6	7.1 7.2	4.0 4.4	8.7 8.7	4	7.8 7.8	6.3 6.2	8.8 8.7	5	7.4 7.2	6.2 5.3	9.0 9.0
		8	8.4	4.4 5.8	9.7	8	8.5	6.2	9.8	8	8.8	7.0	9.0
		6	9.2	8.5	10.0	6	9.3	8.7	10.0	6	9.3	8.7	10.0
Dissolved oxygen, laboratory	mg/L	5	9.9	8.6	10.9	5	9.8	8.4	11.0	5 г	-01	7.8	10.0
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5.	6	9.7	7.6	11.9	6	9.4	7.7	11.7	6	78 5	7.6	11.6
		5	10.9	10.0	11.9	5	11.2	10.1	11.9	8	10.8	9.9	11.8
		11	100	82	114	11	101	80	116	11	100	80	114
		12	116	96	134	12	114	92	136	12	115	94	130
Hardness	mg/L	13	121	96	134	13	121	94	138	13	119	94	134
		15	119	96	132	15	119	94	134	19	121	96	140
		6	112	102	134	6	114	104	128	6	114	100	132
		11	0.14	0.06	0.26	11	0.16	0.05	0.41	11	0.16	0.07	0.30
Manganese	mg/L	12	0.11	0.06	0.20	12	0.09	0.02	0.26	12	0.12	0.06	0.20
		13	0.12	0.06	0.19	13	0.11	0.06	0.16	13	0.13	0.07	0.25
Manganese, filtered	mg/L	15	0.025	0.000	0.045	15	0.032	0.002	0.059	19	0.041	0.006	0.177
angunese, intered	g/ -	6	0.009	0.005	0.013	6	0.012	0.002	0.015	6	0.013	0.008	0.022
Manganese, unfiltered	mg/L	15	0.127	0.088	0.164	15	0.130	0.074	0.178	19	0.178	0.110	0.478
Nitrate, as nitrogen		6	0.097	0.069	0.122	6	0.110	0.056	0.177	6	0.124	0.071	0.172
$(NO_3 - N)$	mg/L	5	1.90	1.00	2.80	5	1.80	1.60	2.00	8	3.40	0.70	13.00
Nitrite (NO ₂) ⁽¹⁾	mg/L	9	0.007	0.000	0.023	9	0.229	0.000	2.000	10	0.011	0.000	0.029
		6	0.025	0.000	0.137	6	0.025	0.001	0.136	6	0.031	0.000	0.169
Ormenia	m c //	12	0.198	0.162	0.236	12	0.197	0.164	0.239	12	0.199	0.166	0.254
Organics	mg/L	12	0.139	0.112	0.208	12	0.138	0.111	0.205	12	0.143	0.120	0.216
		12	0.129	0.100	0.169	12	0.131	0.106	0.170	12	0.133	0.112	0.194

						Samp	le Locat	ions					
Sample Parameter	Units		Location 4	4			Locatio	on 5			Locatio	n 6	
		Number of Samples	Avg	Min	Max	Number of Samples	Avg	Min	Max	Number of Samples	Avg	Min	Мах
		19	8.1	7.4	8.9	20	8.1	7.4	8.9	20	8.2	7.5	8.9
		18	8.2	7.6	8.8	18	8.3	7.6	8.8	18	8.3	7.6	8.8
pН	S.U	18	8.3	7.8	8.7	18	8.3	7.8	8.8	18	8.3	7.8	8.8
pri	5.0	6	8.2	7.7	8.8	6	8.2	7.7	8.6	6	8.2	7.7	8.7
		20	8.3	7.8	9.0	20	8.4	7.8	9.0	27	8.3	7.7	8.9
		6	8.2	7.9	8.5	6	8.2	7.8	8.6	6	8.2	8.0	8.6
Phosphate (PO ₄)	mg/L	19	0.07	0.01	0.20	19	0.06	0.00	0.20	25	0.26	0.00	3.70
	iiig/L	6	0.07	0.00	0.13	6	0.06	0.03	0.17	6	0.04	0.00	0.08
Specific conductivity	μmhos	12	222	171	259	12	249	208	287	14	246	148	311
(microohms)	μππος	6	227	203	261	6	237	204	270	6	235	201	281
		8	19	8	29	8	21	10	29	8	21	10	29
		6	20	14	28	6	20	14	28	6	20	14	28
Temperature	Deg. C	5	20	12	30	5	20	12	30	5	20	12	30
		6	20	8	25	6	20	9	25	6	20	9	25
		4	8	6	9	4	8	7	9	7	10	8	17
Total dissolved solids (TSS)	mg/L	12	152	115	180	12	168	136	203	14	176	102	355
	mg/∟	6	150	132	178	6	156	145	187	6	153	136	177
Total suspended solids (TSS)	mg/L	1	7	7	7	1	7	7	7	1	14.0	14.0	14.0
Total suspended solids (155)	iiig/L	5	11.8	8	16	5	9.4	7	13	8	18.2	11.2	24.0
		12	11.8	6.0	24.1	12	11.1	5.0	25.2	12	13.7	6.6	29.4
		12	10.2	6.2	18.2	12	9.6	4.6	18.6	12	12.1	6.8	17.6
Turbidity	NTU	13	12.1	4.6	21.1	13	10.7	6.4	23.3	13	13.1	7.6	21.9
		15	12.6	7.0	21.8	15	10.9	7.5	18.9	19	21.8	7.3	77.8
		6	11.6	5.9	20.3	6	6.0	3.7	8.0	6	16.6	6.4	23.8
UV254	cm⁻¹	15	0.12	0.08	0.19	15	0.12	0.09	0.18	19	0.15	0.08	0.33
0v254	cm	6	0.12	0.10	0.17	6	0.11	0.10	0.12	6	0.12	0.10	0.19

					Sample Lo	oca <u>tions</u>			
Sample Parameter	Units		Locatio	on 7			Locatio	on 8	
Sample Parameter	Units	Number of	Avg	Min	Max	Number of	Avg	Min	Мах
		Samples 11	95	80	108	Samples 11	95	80	110
		12	101	80	108	12	102	84	112
Alkalinity	mg/L	13	106	90	120	13	102	92	120
,	5.	15	110	88	122	18	111	88	136
		6	95	90	108	6	96	90	108
		8	0.34	0.11	0.69	8	0.33	0.11	0.71
		6	0.29	0.14	0.62	6	0.29	0.14	0.65
Ammonia (NH ₃) ⁽¹⁾	mg/L	5	0.19	0.01	0.29	5	0.20	0.00	0.30
	iiig/ L	6	0.31	0.17	0.49	6	0.31	0.18	0.48
		20	0.07	0.00	0.45	24	0.05	0.00	0.22
		6	0.05	0.00	0.11	6	0.06	0.01	0.15
		5	2.5	1.0	3.8	3	2.2	0.8	3.0
Biochemical oxygen demand		1	14.0	14.0	14.0	1	12.0	12.0	12.0
(BOD ₅)	mg/L	2	4.8	4.6	5.0	2	5.7	5.0	6.4
		1	2.0	2.0	2.0				
		4	2.1	0.9	3.4	4	2.1	0.9	4.0
		8	18.5	11.3	25.7	8	18.2	13.8	23.3
Chemical oxygen demand	ma (l	6	16.4	13.3	22.7	6	18.5	9.2	35.0
(COD)	mg/L	5	28.6	13.3	53.0	5	25.0	5.4	51.0
		6 5	27.1 15.8	15.1	60.7 20.0	6 6	30.8 11.0	16.6 1.0	60.0
		4	1959	12.0	>2419.6	6	1767		21.0 >2419.6
				578	>2419.6			816	
Coliforms		6	758	1		6	611	1	>2419.6
Comorms	MPN	4	1888	727	>2419.6	4	1350	345	>2419.6
		6	1056	29	>2419.6	6	1288	19	>2419.6
		5	180	14	638.0	5	111	20	148
Copper ⁽¹⁾	μg/L	15 6	1.8 0.2	0.0	16.0	18 6	0.8	0.0	5.0
		8	8.3	0.0 7.6	1.0 8.7	8	8.3	0.0 7.7	2.0 8.7
		4	8.1	7.0	9.5	4	8.2	7.0	9.5
Dissolved oxygen, initial	mg/L	4	8.7	8.4	9.1	4	8.6	7.9	9.1
(in situ)	iiig/ L	4	8.8	7.5	9.9	4	8.6	7.3	9.9
		4	10.2	9.9	10.4	5	10.0	9.3	10.4
		8	7.1	6.1	7.8	8	6.4	0.3	7.7
Discolved surger final		4	7.7	6.9	8.8	4	7.6	6.8	8.5
Dissolved oxygen, final (<i>in situ</i>)	mg/L	4	7.1	5.8	8.4	4	6.7	5.1	8.2
(ur situ)		4	7.9	6.3	8.8	4	7.8	6.2	8.9
		4	7.8	7.0	8.4	5	8.0	6.6	9.1
		8	8.7	7.2	9.7	8	8.4	7.5	9.6
		6	9.1	8.3	10.1	6	9.1	7.9	10.1
Dissolved oxygen, laboratory	mg/L	5	9.3	8.2	10.8	5	9.0	6.3	10.4
		6	9.1	7.4	11.6	6	8.7	7.1	11.6
		5	11.3	10.8	11.6	6	11.2	10.3	11.7
		11	100	80	110	11	102	82	114
		12	115	98	126	12	116	98	130
Hardness	mg/L	13	120	98	136	13	120	96	136
		15	122	98	140	6	114	100	142
		6	113	96	132	6	114	100	142
		11	0.15	0.05	0.31	11	0.15	0.05	0.30
Manganese	mg/L	12	0.11	0.05	0.25	12	0.11	0.05	0.24
		13	0.12	0.07	0.23	13	0.13	0.07	0.37
Manganese, filtered	mg/L	15	0.042	0.008	0.163	18	0.047	0.009	0.187
	<i>J.</i>	6	0.010	0.008	0.014	6	0.011	0.007	0.014
Manganese, unfiltered	mg/L	15	0.143	0.076	0.446	18	0.142	0.066	0.488
_	<u>9</u> , L	6	0.091	0.056	0.131	6	0.100	0.053	0.174
Nitrate, as nitrogen	mg/L	5	1.72	1.30	2.30	6	1.80	1.40	2.30
(NO ₃ - N)	<u> </u>								
		9	0.006	0.000	0.018	10	0.006	0.000	0.015
Nitrite (NO ₂) ⁽¹⁾	mg/L		0.005	0.000	0.400		0.00-	0.000	0 4 2 2
	mg/L	6	0.025	0.000	0.133	6	0.025	0.000	0.138
	mg/L	6 12 12	0.025 0.195 0.139	0.000 0.164 0.115	0.133 0.226 0.210	6 12 12	0.025 0.192 0.141	0.000 0.159 0.113	0.138 0.222 0.216

80

					Sample L	ocations			
Sample Parameter	Units		Locatio	on 7			Locatio	on 8	
	Olints	Number of Samples	Avg	Min	Max	Number of Samples	Avg	Min	Мах
		20	8.2	7.5	8.9	20	8.1	7.5	8.8
		18	8.2	7.6	8.7	18	8.2	7.7	8.7
pН	S.U	18	8.3	7.8	8.9	18	8.3	7.6	8.9
pn	5.0	6	8.1	7.8	8.5	6	8.0	7.5	8.3
		20	8.3	7.7	9.0	24	8.3	7.6	9.0
		6	8.3	8.0	8.5	6	8.2	7.8	8.5
Phosphate (PO ₄)	ma/l	19	0.05	0.01	0.20	22	0.08	0.01	0.38
r nosphate (r O ₄)	mg/L	6	0.04	0.01	0.08	6	0.0	0.01	0.04
Specific conductivity	μmhos	12	249	166	292	14	267	158	548
(microohms)	μπποs	6	232	216	270	6	229	209	267
		8	21	11	29	8	21	11	28
		6	20	14	28	6	20	14	27
Temperature	Deg. C	5	20	12	29	5	20	12	29
		6	20	10	24	6	19	10	24
		4	9	8	9	5	8	8	9
Total dissolved solids (TSS)	ma/l	12	159	102	186	14	162	108	200
Total dissolved solids (155)	mg/L	6	156	142	187	6	149	142	162
Total suspended solids (TSS)	ma/l	1	8.0	8.0	8.0	1	3	3	3
Total suspended solids (155)	mg/L	5	9.0	6.0	12.0	6	10	5	15
		12	11.2	5.3	21.5	12	9.8	5.4	21.2
		12	10.6	4.9	21.2	12	9.3	4.9	18.3
Turbidity	NTU	13	10.6	6.7	17.4	13	9.9	6.0	18.2
		15	9.5	5.3	20.2	18	9.2	5.2	33.2
		6	7.0	4.4	12.8	6	6.6	3.6	13.0
UV254	-1	15	0.12	0.09	0.19	18	0.12	0.09	0.25
07234	cm⁻¹	6	0.11	0.09	0.12	6	0.11	0.09	0.12

(1) Negative sample results occurred for these parameters and were assumed to be zer

		Chlorophyl	l-a Respons Threshold	e Impairment	Total P	hosphorus (40		hreshold	Total		creening Th	reshold	Chlo		reening Thr	eshold		E	ndpoint Criteria		
Year	Number of Samples	Summer Geometric Mean	Exceeds	Impaired? ⁽¹⁾	Summer Geometric Mean	Exceeds	μg/L) Consider Endpoints ? (Y/N)	Impaired? ⁽²⁾	Summer Geometric Mean	Exceeds Threshold ? (Y/N)	3 μg/L) Consider Endpoints ? (Y/N)	Impaired? ⁽²⁾	Summer Geometric Mean	Exceeds Threshold ? (Y/N)	µg/L) Consider Endpoints ? (Y/N)	Impaired? ⁽²⁾	Eutrophication- Related Mortality Events ⁽³⁾	pH or DO Epilimnetic Excursions ⁽⁴⁾⁽⁵⁾	Cyanobacteria ⁽⁶⁾	Eutrophication Related Aquatic Diversity Shifts ⁽⁷⁾	n- Excessive Mineral Turbidity ⁽⁸⁾
2000	2	37.7	Y	N	72.1	Y	N	N	1077	Y	N	N	37.7	Y	N	N	No data	No data	N	N	N
2001	7	20.4	Ν	Ν	33.6	N	N	N	597	N	N	N	20.4	Y	Y	Ν	No data	No data	N	N	N
2002	9	18.9	Ν	Ν	48.7	Ν	Ν	N	725	N	Ν	N	18.9	Y	Y	Ν	No data	No data	N	Ν	Ν
2003	8	18.1	Ν	Ν	43.3	Ν	Ν	N	676	Ν	N	Ν	18.1	Y	N	Ν	No data	No data	N	N	N
2004	8	26.2	Ν	Ν	50.2	Y	Ν	N	662	Ν	N	Ν	26.2	Y	N	Ν	N	No data	N	N	N
2005	10	23.1	Ν	Ν	45.1	Ν	Ν	Ν	767	Ν	N	Ν	23.1	Y	Y	Ν	N	No data	N	N	N
2006	9	27.1	N	Ν	42.3	N	N	N	629	N	N	N	27.1	Y	Y	N	N	No data	N	N	N
2007	6	21.0	N	N	44.0	N	N	N	678	N	N	N	21.0	Y	Y	N	N	No data	N	N	N
2008	8	13.6	Ν	Ν	45.5	Y	Ν	N	850	Y	N	N	13.6	N	Y	Ν	N	No data	N	N	N
2009	6	21.7	Ν	Ν	44.2	Y	Y	N	903	Y	N	N	21.7	Y	Y	Ν	Ν	No data	N	Ν	N
2010	8	22.0	Ν	Ν	60.9	Y	Y	Ν	858	Y	Y	Ν	22.0	Y	Y	Ν	Ν	N	N	Ν	N
2011	7	18.9	Ν	Ν	35.9	N	Y	N	772	N	Y	N	18.9	Y	Y	Ν	N	N	N	N	N
2012	7	32.5	Y	Ν	49.8	Y	Y	Ν	871	Y	Ν	Ν	32.5	Y	Y	Ν	Ν	N	Ν	Ν	N
2013	8	14.7	Ν	Ν	47.1	Y	Y	N	900	Y	Y	N	14.7	N	Ν	Ν	Ν	N	N	Ν	N
2014	8	12.6	Ν	Ν	31.5	Ν	Y	N	690	N	Y	N	12.6	N	N	Ν	N	No data	N	N	N
2015	7	24.6	Ν	Ν	40.6	N	N	N	684	N	Ν	N	24.6	Y	N	Ν	N	No data	N	N	N
2016	8	23.5	Ν	Ν	40.1	Ν	Ν	Ν	816	Ν	Ν	Ν	23.5	Y	Y	Ν	Ν	No data	N	Ν	Ν
2017	8	20.9	Ν	Ν	43.2	Ν	Ν	Ν	928	Y	Ν	Ν	20.9	Y	Y	Ν	N	No data	N	N	N
2018	7	18.2	Ν	N	36.8	Ν	Ν	Ν	966	Y	Y	Ν	18.2	Y	Y	Ν	Report forthcoming	No data	Ν	Ν	N

Large Table 3a Sugar Creek Lake Volunteer Monitoring Site 1 Nutrient Criteria Comparison

(1) Per Missouri's Nutrient Criteria Implementation Plan (rule reference), a lake is considered impaired for nutrient criteria if the geometric mean of Chl-a samples taken between May and September in a calendar year exceeds the respective ecoregion Chla-response impairment threshold value more than once in three years' time.

(2) For lakes where the geometric mean of Chl-a, TN, or TP exceeds the ecoregional nutrient screening evaluation thresholds, the additional response assessment endpoints will be evaluated. When one of these endpoints indicate a eutrophication impact in the same year as a nutrient screening threshold exceedance, the lake will be placed into category 5 and on the 303(d) list.

(3) Following the Department's Listing Methodology Document (Appendix B of the Nutrient Implementation Plan), this endpoint criteria is exceeded if two or more fish kills have occurred within the last three years of available data or there is one large (>100 fish and covering more than ten percent of the lake area) fish kill documented to be caused by dissolved oxygen excursions, pH, algal blooms, or the toxins associated with algal blooms (10 CSR 20-7.031(5)(N)6.A).

(4) Following the Department's Listing Methodology Document (Appendix B of the Nutrient Implementation Plan), this endpoint criteria will be evaluated further if the following occur: if more than 10% of the measurements are below 5.0 mg/L minimum to protect aquatic life or more than 10% of the measurements are below 5.0 mg/L minimum to protect aquatic life or more than 10% of the measurements are below 5.0 mg/L minimum to protect aquatic life or more than 10% of the measurements are below 5.0 mg/L minimum to protect aquatic life or more than 10% of the measurements are below 5.0 mg/L minimum to protect aquatic life or more than 10% of the measurements are below 5.0 mg/L minimum to protect aquatic life or more than 10% of the measurements are below 5.0 mg/L minimum to protect aquatic life or more than 10% of the measurements are below 5.0 mg/L minimum to protect aquatic life or more than 10% of the measurements are below 5.0 mg/L minimum to protect aquatic life or more than 10% of the measurements are below 5.0 mg/L minimum to protect aquatic life or more than 10% of the measurements are below 5.0 mg/L minimum to protect aquatic life or more than 10% of the measurements are below 5.0 mg/L minimum to protect aquatic life or more than 10% of the measurement (Determine if the if the criterion have been exceeded [10 CSR 20-7.031(5)(N)6.B].

(5) Dissolved oxygen data is collected by the City of Moberly and is not part of the approved Quality Assurance Project Plan.

(6) This endpoint criteria is exceeded if the following algal toxin value thresholds are exceeded: microcystin - 4.0 ug/L, cylindospermopsin - 8.0 ug/L, anaytoxin-a - 8.0 ug/L, and saxitoxin - 4.0 ug/L. These toxin levels are associated with a total toxigenic algal species cell count greater than or equal to 100,000 cell/mL [10 CSR 20-7.031(5)(N)6.C].

(7) This endpoint criteria is exceeded if the Department finds evidence in biological shifts in fish or invertebrate communities related to eutrophication [10 CSR 20-7.031(5)(N)6.D]. The Department will request aquatic community data from multiple sources to perform an evaluation of this endpoint. The Department finds evidence in biological shifts in fish or invertebrate communities related to eutrophication [10 CSR 20-7.031(5)(N)6.D]. The Department will request aquatic community data from multiple sources to perform an evaluation of this endpoint. The Department will request aquatic community data from multiple sources to perform an evaluation of this endpoint. The Department will request aquatic community data from multiple sources to perform an evaluation of this endpoint. The Department will request aquatic community data from multiple sources to perform an evaluation of this endpoint. The Department will request aquatic community data from multiple sources to perform an evaluation of this endpoint. The Department will request aquatic community data from multiple sources to perform an evaluation of this endpoint. The Department will request aquatic community data from multiple sources to perform an evaluation of this endpoint. The Department will request aquatic community data from multiple sources to perform an evaluation of this endpoint. The Department will request aquatic community data from multiple sources to perform an evaluation of this endpoint. The Department will request aquatic community data from multiple sources to perform an evaluation of the performance of the p

(8) This endpoint criteria is exceeded if there are measured lake Secchi depths less than 0.6 meters in the Plains ecoregion. Yearly average Secchi depths below the applicable ecoregional value may constitute evidence of impairment. Additional analysis of average Chl-a/TP ratios will also be conducted before determining impairment status. Unless attributed to other physical factors, Chl-a/TP ratios at or below 0.15 and an ISS value greater than or equal to 10 mg/L as determined by yearly means will serve as an indicator of excessive mineral turbidity and constitute evidence of impairment. Assessment threshold values for Secchi depth, Chla-/TP ratio, and ISS shall all be exceeded before determining a water is impaired [10 CSR 20-7.031(5)(N)6.E].

Large Table 3b Sugar Creek Lake	Volunteer Monitoring Site 2 Nutrient	Criteria Comparison
5 5	5	•

	Number		ophyll-a Res irment Thre (30 µg/L)		Total F		Screening T µg/L)	hreshold	Total		creening Th B µg/L)	reshold	Chlo		creening Th Bµg/L)	reshold		E	ndpoint Criteria		
Year	of Samples	Summer Geometric Mean	Exceeds Threshold ? (Y/N)	Impaired? ⁽	Summer Geometric Mean	Exceeds Threshold ? (Y/N)	Consider Endpoints ? (Y/N)	Impaired? ⁽²⁾	Summer Geometric Mean	Exceeds Threshold ? (Y/N)	Consider Endpoints ? (Y/N)	Impaired? ⁽²⁾	Summer Geometric Mean	Exceeds Threshold ? (Y/N)	Consider Endpoints ? (Y/N)	Impaired? ⁽²⁾	Eutrophication Related Mortality Events ⁽³⁾	pH or DO Epilimnetic Excursions ⁽⁴⁾⁽⁵⁾	Cyanobacteria ⁽⁶⁾	Eutrophication Related Aquatic Diversity Shifts ⁽⁷⁾	1- Excessive Mineral Turbidity ⁽⁸⁾
2000	2	62.2	Y	N	90.1	Y	N	N	1087	Y	N	N	62.2	Y	N	N	No data	No data	N	N	Ν
2001	7	23.2	N	N	44.1	N	N	N	614	N	N	N	23.2	Y	Y	N	No data	No data	N	N	N
2002	9	23.3	N	N	56.3	N	N	N	770	N	N	N	23.3	Y	Y	N	No data	No data	N	N	N
2003	8	24.3	N	N	55.7	N	N	N	730	N	N	N	24.3	Y	Y	N	No data	No data	N	N	N
2004	8	26.6	N	N	58.2	Y	N	N	664	N	N	N	26.6	Y	Y	N	N	No data	N	N	N
2005	9	38.9	Y	N ⁽⁹⁾	58.2	N	N	N	820	N	N	N	38.9	Y	Y	N	N	No data	N	N	N
2006	9	31.4	Y	N ⁽⁹⁾	47.9	N	N	N	640	N	N	N	31.4	Y	Y	N	N	No data	N	N	N
2007	6	23.3	N	N	50.0	N	N	N	661	N	N	N	23.3	Y	Y	N	N	No data	N	N	N
2008	8	13.9	N	N	57.4	Y	N	N	845	Y	N	N	13.9	N	Y	N	N	No data	N	N	N
2009	6	15.9	N	N	42.9	Y	Y	N	730	N	N	N	15.9	N	N	N	N	No data	N	N	N
2010	8	26.9	N	N	63.4	Y	Y	N	884	Y	Y	N	26.9	Y	N	N	N	N	N	N	N
2011	7	26.2	N	N	48.3	N	Y	N	800	N	Y	N	26.2	Y	Y	N	N	N	N	N	N
2012	7	32.9	Y	N	55.1	Y	Y	N	849	Y	Y	N	32.9	Y	Y	N	N	N	N	N	N
2013	8	20.0	N	N	55.3	Y	Y	N	852	Y	Y	N	20.0	Y	Y	N	N	N	N	N	N
2014	8	18.9	N	N	41.3	N	Y	N	703	N	Y	N	18.9	Y	Y	N	N	No data	N	N	N
2015	7	24.9	N	N	46.2	N	N	N	755	N	N	N	24.9	Y	N	N	N	No data	N	N	N
2016	8	23.4	N	N	44.4	N	N	N	834	N	N	N	23.4	Y	Y	N	N	No data	N	N	N
2017	8	24.5	N	N	48.6	N	N	N	937	Y	N	N	24.5	Y	Y	N	N	N	N	N	N
2018	7	19.5	Ν	Ν	42.4	N	Ν	Ν	828	Ν	Y	Ν	19.5	Y	Y	Ν	Report forthcoming	No data	Ν	Ν	Ν

(1) Per Missouri's Nutrient Criteria Implementation Plan (rule reference), a lake is considered impaired for nutrient criteria if the geometric mean of Chl-a samples taken between May and September in a calendar year exceeds the respective ecoregion Chla-response impairment threshold value more than once in three years' time.

(2) For lakes where the geometric mean of Chl-a, TN, or TP exceeds the ecoregional nutrient screening evaluation thresholds, the additional response assessment endpoints will be evaluated. When one of these endpoints indicate a eutrophication impact in the same year as a nutrient screening threshold exceedance, the lake will be placed into category 5 and on the 303(d) list.

(3) Following the Department's Listing Methodology Document (Appendix B of the Nutrient Implementation Plan), this endpoint criteria is exceeded if two or more fish kills have occurred within the last three years of available data or there is one large (>100 fish and covering more than ten percent of the lake area) fish kill documented to be caused by dissolved oxygen excursions, pH, algal blooms, or the toxins associated with algal blooms (10 CSR 20-7.031(5)(N)6.A).

(4) Following the Department's Listing Methodology Document (Appendix B of the Nutrient Implementation Plan), this endpoint criteria will be evaluated further if the following occur: if more than 10% of the measurements are below 5.0 mg/L minimum to protect aquatic life or more than 10% of the measurements are below 5.0 mg/L minimum to protect aquatic life or more than 10% of the measurements are outside the 6.5 to 9.0 range to protect aquatic life, the binomial probabilities will be used to determine if the if the criterion have been exceeded [10 CSR 20-7.031(5)(N)6.B].

(5) Dissolved oxygen data is collected by the City of Moberly and is not part of the approved Quality Assurance Project Plan.

(6) This endpoint criteria is exceeded if the following algal toxin value thresholds are exceeded: microcystin - 4.0 ug/L, cylindospermopsin - 8.0 ug/L, anaytoxin-a - 8.0 ug/L, and saxitoxin - 4.0 ug/L. These toxin levels are associated with a total toxigenic algal species cell count greater than or equal to 100,000 cell/mL [10 CSR 20-7.031(5)(N)6.C].

(7) This endpoint criteria is exceeded if the Department finds evidence in biological shifts in fish or invertebrate communities related to eutrophication [10 CSR 20-7.031(5)(N)6.D]. The Department will request aquatic community data from multiple sources to perform an evaluation of this endpoint. The Department finds evidence in biological shifts in fish or invertebrate communities related to eutrophication [10 CSR 20-7.031(5)(N)6.D]. The Department will request aquatic community data from multiple sources to perform an evaluation of this endpoint. The Department will request aquatic the city of Moberly with fish sampling population statistics from 2001, 2005, 2009, 2014 (reference (26)); the information provided in these statistics does not indicate this endpoint criteria is met

(8) This endpoint criteria is exceeded if there are measured lake Secchi depths less than 0.6 meters in the Plains ecoregion. Yearly average Secchi depths below the applicable ecoregional value may constitute evidence of impairment. Additional analysis of average ChI-a/TP ratios will also be conducted before determining impairment status. Unless attributed to other physical factors, ChI-a/TP ratios at or below 0.15 and an ISS value greater than or equal to 10 mg/L as determined by yearly means will serve as an indicator of excessive mineral turbidity and constitute evidence of impairment [10 CSR 20-7.031(5)(N)6.E].

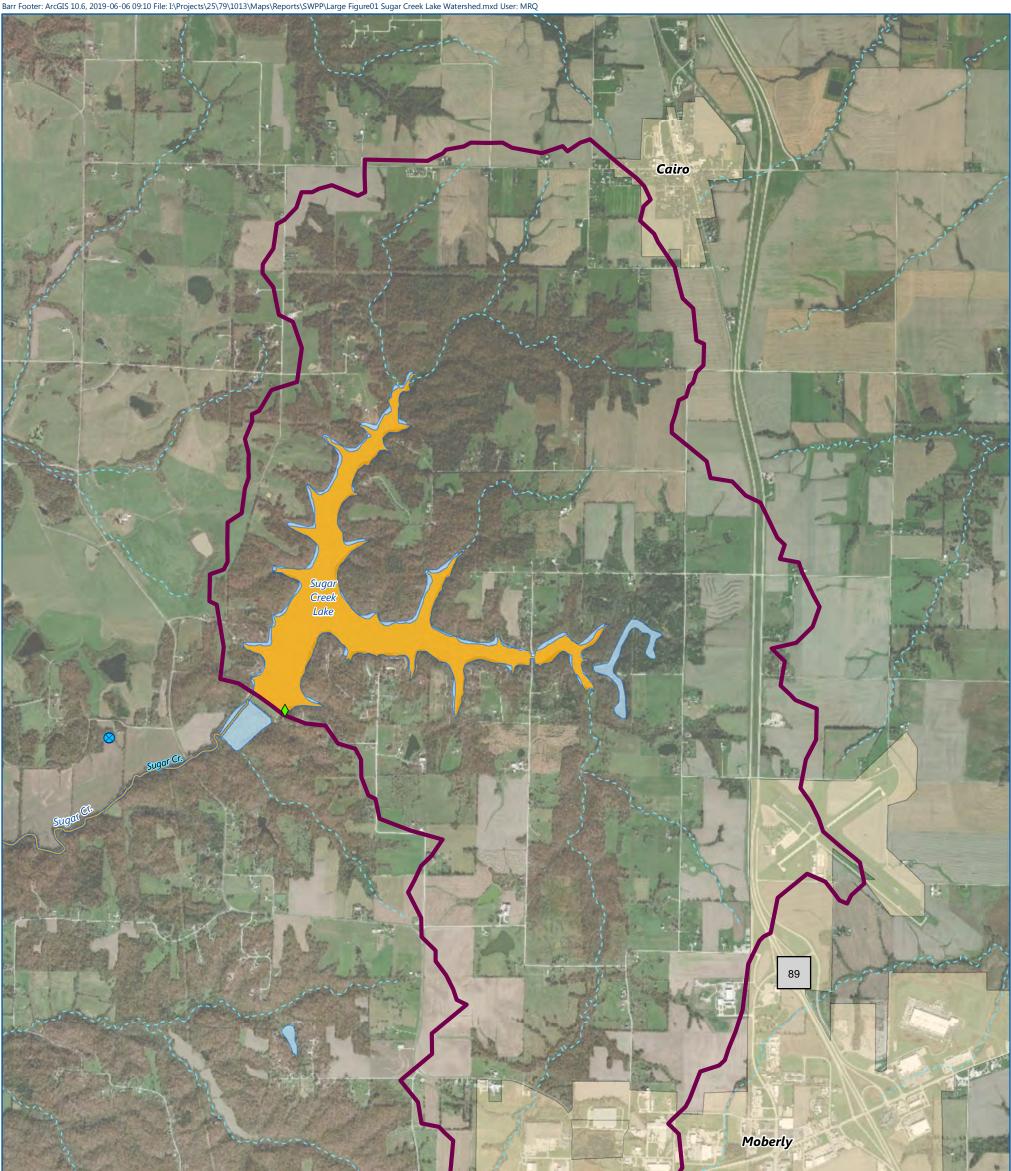
(9) According to the Nutrient Implementation Plan, data older than seven years will not be considered for impairment.

Large Table 4 Sugar Creek Lake Volunteer Monitoring Sites 1 and 2 Secchi, Chl-a/TP, and Inorganic Suspended Solids Data

					Site 1						Site	2		
Year	Number of	Secchi De	epth (meters)		rophyll-a / Total osphorus Ratio	Inorgani	c Suspended Solids (mg/L)	Number of	Secchi D	epth (meters)		ohyll-a / Total ohorus Ratio	Inorganic	Suspended Solids (mg/L)
	Samples	Annual Average	< Ecoregional Value of 0.6? (Y/N)	Annual Average	≤ Nutrient Implementation Plan Suggestion of 0.15? (Y/N)	Annual Average	≥ Nutrient Implementation Plan Suggestion of 10? (Y/N)	Samples	Annual Average	< Ecoregional Value of 0.6? (Y/N)	Annual Average	≤ Nutrient Implementation Plan Suggestion of 0.15? (Y/N)	Annual Average	≥ Nutrient Implementation Plan Suggestion of 10? (Y/N)
2000	2	0.66	Ν	0.52	Ν	4.6	Ν	2	0.61	Ν	0.72	Ν	5.0	Ν
2001	5	0.99	Ν	0.59	N	3.5	Ν	7	0.80	Ν	0.50	Ν	5.3	Ν
2002	8	0.82	Ν	0.41	N	5.7	N	8	0.75	N	0.43	Ν	7.0	Ν
2003	7	0.83	N	0.41	N	5.9	N	8	0.75	N	0.43	N	9.1	Ν
2004	8	0.80	Ν	0.51	N	5.9	N	8	0.69	N	0.48	Ν	7.9	Ν
2005	10	0.76	Ν	0.52	N	5.4	Ν	9	0.69	N	0.66	Ν	7.4	Ν
2006	9	0.84	Ν	0.67	N	4.6	N	9	0.76	Ν	0.66	N	6.2	Ν
2007	6	0.86	Ν	0.52	N	4.5	Ν	6	0.70	N	0.52	Ν	5.5	Ν
2008	8	1.02	Ν	0.38	N	5.0	Ν	8	0.83	Ν	0.32	Ν	8.7	Ν
2009	6	0.80	Ν	0.48	N	5.8	Ν	6	0.75	N	0.36	Ν	7.6	Ν
2010	8	0.67	Ν	0.43	Ν	7.1	N	8	0.65	Ν	0.46	Ν	7.7	Ν
2011	7	0.83	Ν	0.53	N	4.6	N	7	0.70	N	0.52	Ν	7.4	Ν
2012	7	0.84	Ν	0.64	Ν	5.0	N	7	0.68	Ν	0.58	Ν	7.3	Ν
2013	8	0.63	N	0.41	N	11.5	Y	8	0.57	Y	0.41	Ν	14.0	Y
2014	8	1.07	Ν	0.44	Ν	2.8	Ν	8	0.88	N	0.45	Ν	4.7	Ν
2015	7	0.87	Ν	0.61	Ν	4.3	N	7	0.66	N	0.56	Ν	5.5	Ν
2016	8	0.80	N	0.65	N	3.9	N	8	0.72	N	0.56	N	5.4	N
2017	8	0.75	N	0.47	N	4.7	N	8	0.66	N	0.46	N	6.1	Ν
2018	7	0.94	Ν	0.54	Ν	3.6	Ν	7	0.78	N	0.57	Ν	4.4	Ν

WS #6.

City Survey Location	Date	Total Algae Count		F	Percent Cou	Other Algae Present				
(Site #)		(count/mL)	Oscillatoria	Unidentified	Gloeocapsa	Cyclotella	Asterionella	Stephanodiscus	Nitzchia	
2	3/27/2017	1600	-	-	-	57.0	33.0	-	5.0	Stauroneis, Trachelomonas, Navicula, Stephanodiscus, Euglena
8	3/27/2017	1300	-	-	-	39.0	42.0	14.0	-	Nitzchia, Trachelomonas
2	3/30/2017	860	-	-	-	33.0	59.0	17.0	3.0	Navicula, Trachelomonas
2	7/26/2017	4900	76.5	9.0	5.0	1.0	-	-	<1.0	Phacotus, Trachelomonas, Closteriopsis, Actinastrum, Haematococcus, Synedra, Spirulina, Merismopedia, Euglena, Anabaena, Cylindrospermum, Aphanocapsa
6	7/26/2017	4600	75.5	8.0	4.5	-	-	-	<1.0	Phacotus, Trachelomonas, Closteriopsis, Actinastrum, Haematococcus, Synedra, Spirulina, Merismopedia, Anabaena, Aphanocapsa, Coelastrum
8	7/26/2017	4600	81.5	9.5	3.5	-	-	-	<1.0	Closteriopsis, Synedra, Cylindrospermum, Scenedesmus, Merismopedia, Trachelomonas, Cylindrospermopsis


Large Table 5 City of Moberly Sugar Creek Lake Algal Data

Large Table 6 City of Moberly Sugar Creek Lake Bottom Sediment Data

Sample ID	Sample Date	Sub-Sample ID	Drainage ID	Map ID	Total Depth	Sediment Depth	BOD mg/L	TSS mg/L	%M	%TS	Total Kjeldahl Nitrogen	Nitrate, NO₃	Ammonia, NH₃	Organic Nitrogen	PAN	P ₂ O ₅	SO ₄ -S	Manganese (Mn)	Comments
#1		1A	Area #1	1A	2' 2"	1"													Area very shallow, little sediment, good bottom
	5/9/2017	1B	Area #1	1B	3' 1"	1"	2.77	2,300	43.66	56.34	1,949	4	59	1,887	422	1,769	639	429	
		1C	Area #1	1C	3'0"	1"													
		2A	Area #2	2A	3'8"	1"													Residential area with 15- 20 docks
#2	F (0 (2017	2B	Area #2	2B	7'0"	2"	4.39	3,250	45.48	54.52	1,724	0	46	1,678	368	2,406	593	543	
#2	5/9/2017	2C	Area #2	2C	11'0"	3"													
		2D	Area #2	2D	16'0"	12"													
#3	5/9/2017	3A	Area #3	3A	3'8"	10"													Fair amount of sediment, 3 to 4 ft. total depth
		3B	Area #3	3B	4'0"	6"	3.25	3,050	48.91	51.09	1,949	3	108	1,838	446	1,613	760	443	
		3C	Area #3	3C	3'8"	6"													
	5/9/2017	4A1	Area #4E	4A1	3'10"	6"													Solid bottom, good cores
#4A		4A2	Area #4E	4A2	9'0"	6"	3.21	2,610	47.64	52.36	2,301	4	50	2,248	488	126,342	2,261	803	
#4A		4A3	Area #4E	4A3	13'0"	12"													
		4A4	Area #4E	4A4	13'4"	12"													
		4B1	Area #4N	4B1	2'10"	1"													4 coves, little sediment, good cores
#4B	5/9/2017	4B2	Area #4N	4B2	3'11"	1"	3.98	2,510	49.65	50.35	1,913	4	46	1,863	408	1,671	693	418	
#4D	5/9/2017	4B3	Area #4N	4B3	6'6"	1"													
		4B4	Area #4N	4B4	5'10"	1"													
		5A	Area #5W	5A	5'8"	1"													4 coves, little sediment, good cores
#5	E /0/2017	5B	Area #5W	5B	7'0"	1"	4.51	3,090	46.21	53.79	1,301	5	57	1,239	293	1,926	781	440	
#5	5/9/2017	5C	Area #5W	5C	6'8"	1"													
		5D	Area #5W	5D	5'6"	1"													

Sample ID	Sample Date	Sub-Sample ID	Drainage ID	Map ID	Total Depth	Sediment Depth	BOD mg/L	TSS mg/L	%М	%TS	Total Kjeldahl Nitrogen	Nitrate, NO3	Ammonia, NH₃	Organic Nitrogen	PAN	P ₂ O ₅	SO4-S	Manganese (Mn)	Comments
#6A		6A1	Mixing Zone #1	6A1	5'0"	1"													No core next to bridge, cores with sludge judge
		6A2	Mixing Zone #1	6A2	5'10"	6"													
	5/9/2017	6A3	Mixing Zone #1	6A3	16'0"	12"	3.59	3,620	58.24	41.76	2,467	0	88	2,378	538	2,042	736	677	
		6A4	Mixing Zone #1	6A4	16'0"	12"													
		6A5	Mixing Zone #1	6A5	16'0"	12"													
#6B	5/9/2017	6B1	Mixing Zone #2A</td><td>6B1</td><td>16'6"</td><td>1"</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td rowspan=4>Channel +22 ft., solid bottom, rock and sand present</td></tr><tr><td>6B2</td><td>Mixing Zone #2A</td><td>6B2</td><td>15'0"</td><td>1"</td><td>4.35</td><td>2,510</td><td>43.99</td><td>56.01</td><td>2,146</td><td>0</td><td>1</td><td>2,145</td><td>430</td><td>3,598</td><td>1,405</td><td>927</td></tr><tr><td>6B3</td><td>Mixing Zone #2A</td><td>6B3</td><td>17'0"</td><td>1"</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>6B4</td><td>Mixing Zone #2A</td><td>6B4</td><td>18'0"</td><td>1"</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td></td><td rowspan=4>5/9/2017</td><td>7A</td><td>Mixing Zone #1- #5</td><td>7A</td><td>21'0"</td><td>1"</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td rowspan=4>Channel +22 ft., had to sample closer to banks</td></tr><tr><td>#7</td><td>7B</td><td>Mixing Zone #1- #5</td><td>7B</td><td>18'6"</td><td>1"</td><td>3.87</td><td>2,440</td><td>49.22</td><td>50.78</td><td>1,835</td><td>0</td><td>1</td><td>1,834</td><td>368</td><td>3,292</td><td>949</td><td>952</td></tr><tr><td>#7</td><td>7C</td><td>Mixing Zone #1- #5</td><td>7C</td><td>19'0"</td><td>1"</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td></td><td>7D</td><td>Mixing Zone #1- #5</td><td>7D</td><td>20'0"</td><td>1"</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td rowspan=3>#8</td><td></td><td>8A</td><td>Intake Area</td><td>8A</td><td>21'0"</td><td>1"</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td rowspan=3>Inlet location +22 ft, little sediment</td></tr><tr><td rowspan=2>5/9/2017</td><td>8B</td><td>Intake Area</td><td>8B</td><td>8'0"</td><td>2"</td><td>4.32</td><td>3,270</td><td>46.93</td><td>53.07</td><td>2,425</td><td>0</td><td>47</td><td>2,378</td><td>509</td><td>3,902</td><td>1,401</td><td>763</td></tr><tr><td>8C</td><td>Intake Area</td><td>8C</td><td>18'0"</td><td>1"</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td></td><td></td><td>8D</td><td>Intake Area</td><td>8D</td><td>15'6"</td><td>1"</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td></td><td></td><td></td><td>3.82</td><td>2,865</td><td>47.99</td><td>52.01</td><td>2,001</td><td>2</td><td>50</td><td>1,949</td><td>427</td><td>14,856</td><td>1,022</td><td>640</td><td></td></tr></tbody></table>																

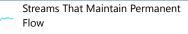
Large Figures

gery; Esri, Digital


 $oldsymbol{\circ}$

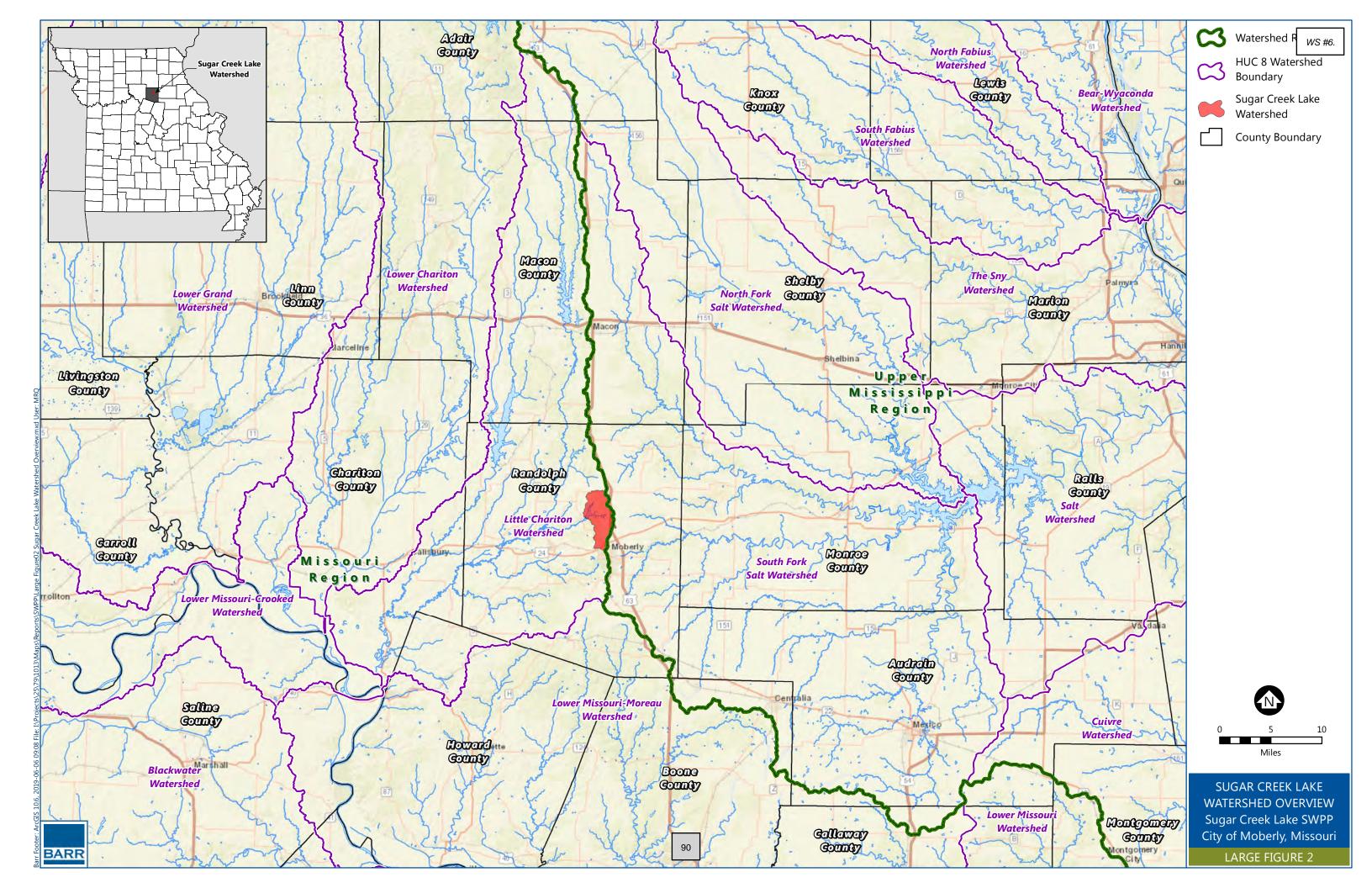
 \diamond

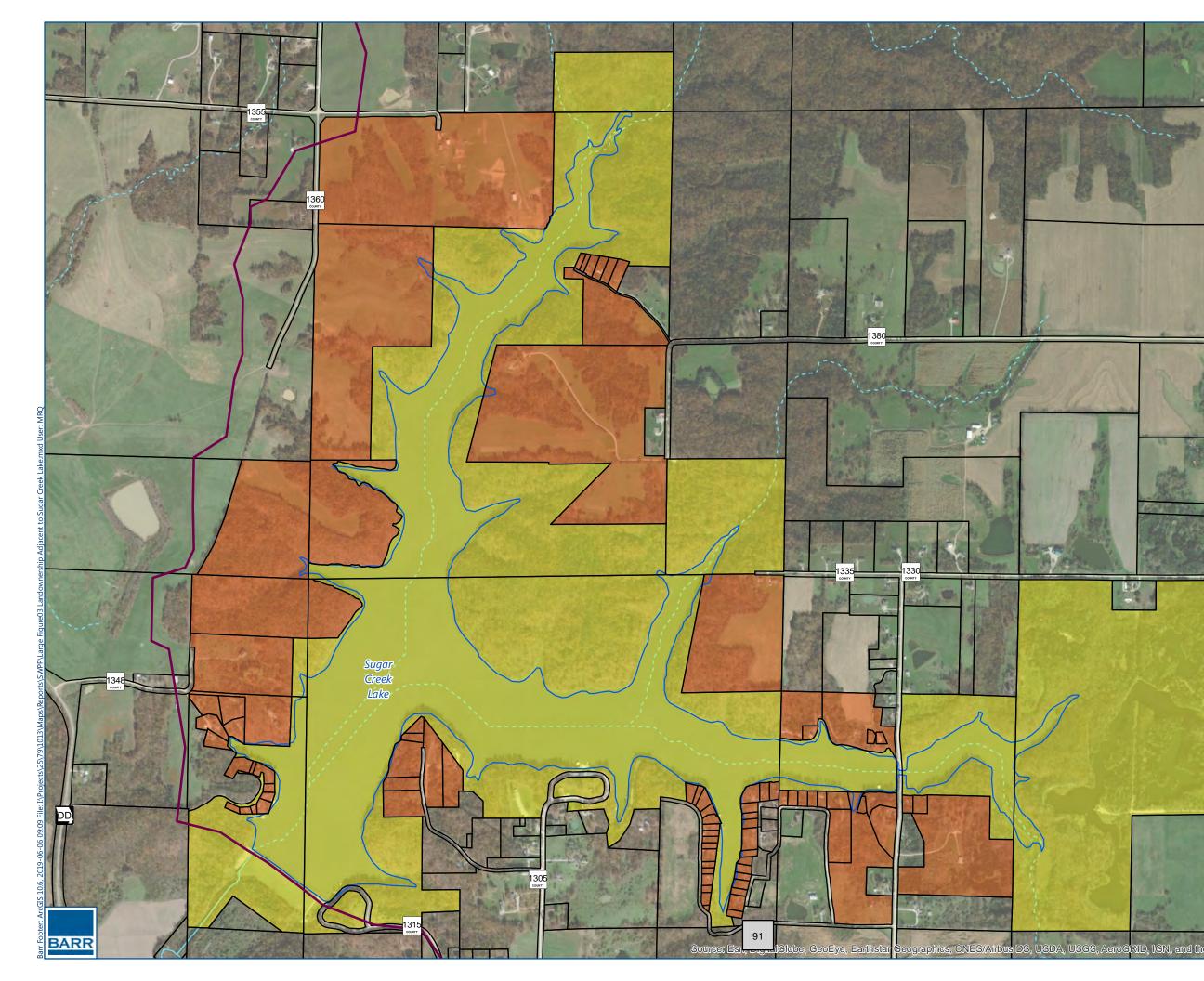
CS


BARR

- Residential Water Supply Well No. 006285 ¹ \otimes € Monitoring Well
 - Non-community Water Well
 - City of Moberly Water Treatment Plant Intake

- Municipal Boundaries
- Section 303(d) Listed Waters Lakes (2012)
- Section 303(d) Listed Waters Rivers and Streams (2016) ~
 - Surface Water
 - Streams That May Cease Flow
 - in Dry Periods





•

SUGAR CREEK LAKE WATERSHED Sugar Creek Lake SWPP City of Moberly, Missouri

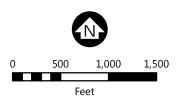
Sugar Creek WS #6. Watershed

Parcel

Landownership

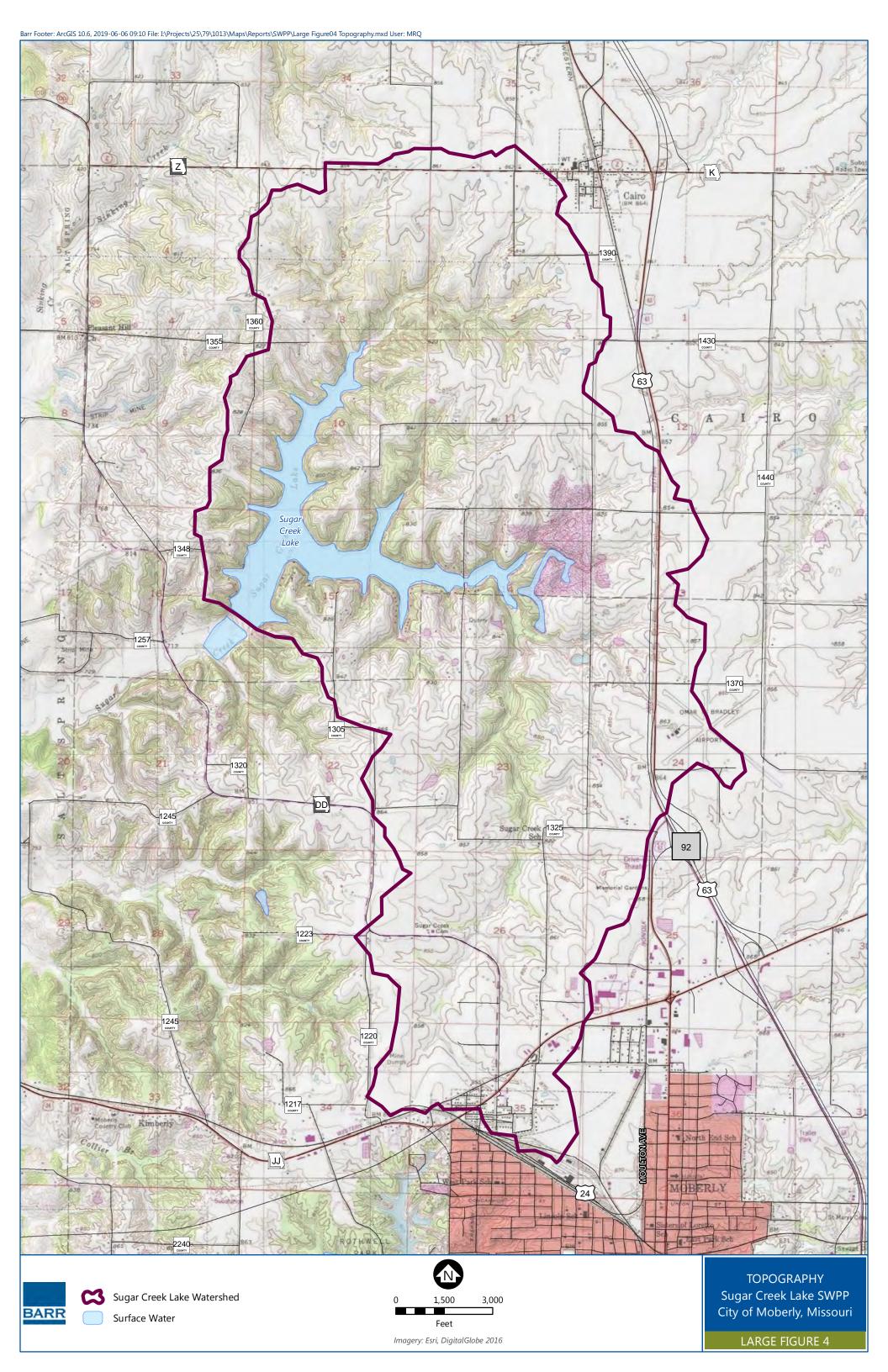
36

City of Moberly

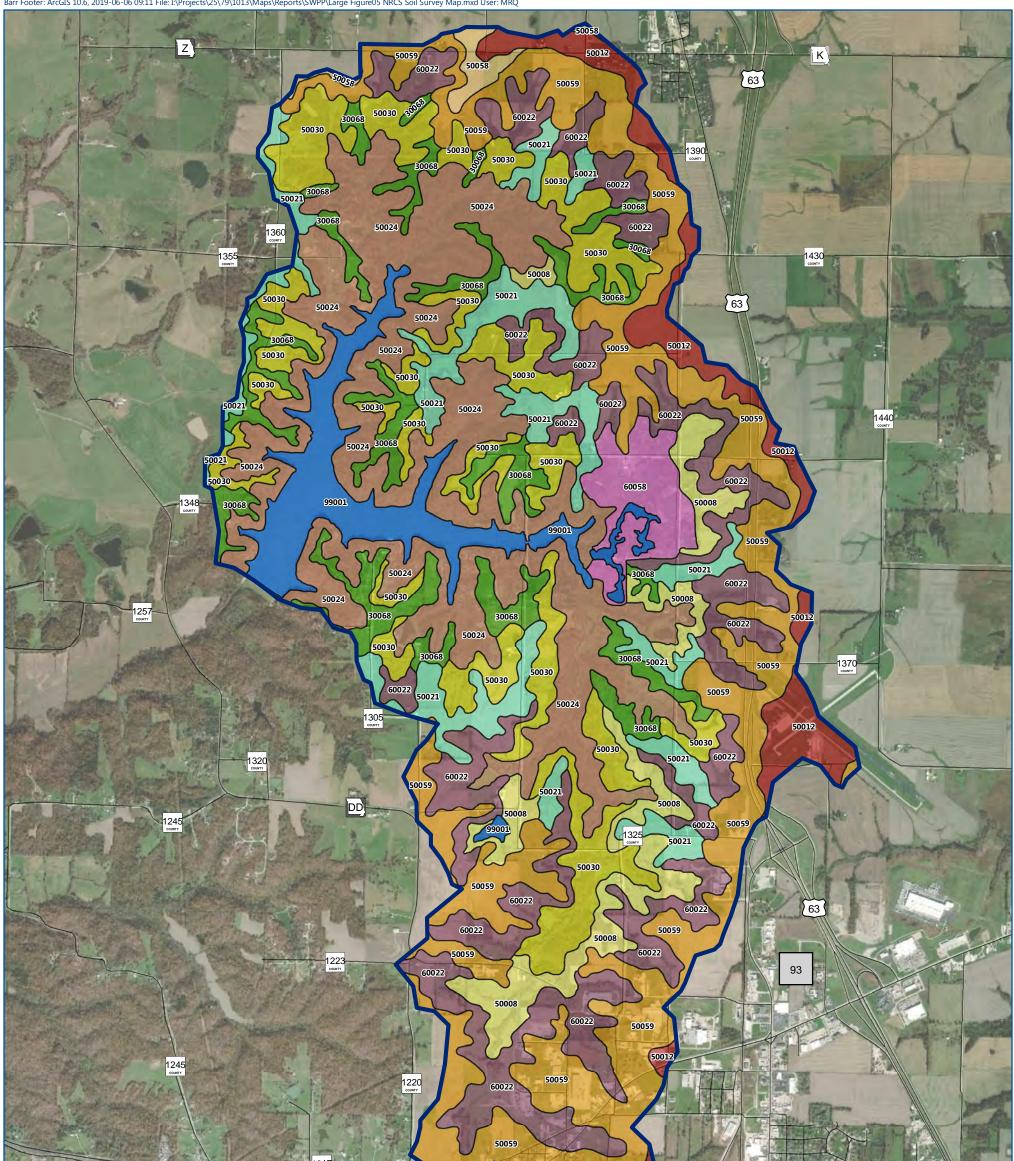

Private

Missouri's Use Designations Dataset (MUDD)

Streams That May Cease Flow in Dry m Periods


> Streams That Maintain Permanent Flow

Randolph County parcel datset received by ClearBasin Software, September 2018



Imagery: Esri, DigitalGlobe 2016

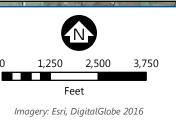
LAND OWNERSHIP ADJACENT TO SUGAR CREEK LAKE Sugar Creek Lake SWPP City of Moberly, Missouri

Barr Footer: ArcGIS 10.6, 2019-06-06 09:11 File: I:\Projects\25\79\1013\Maps\Reports\SWPP\Large Figure05 NRCS Soil Survey Map.mxd User: MRQ

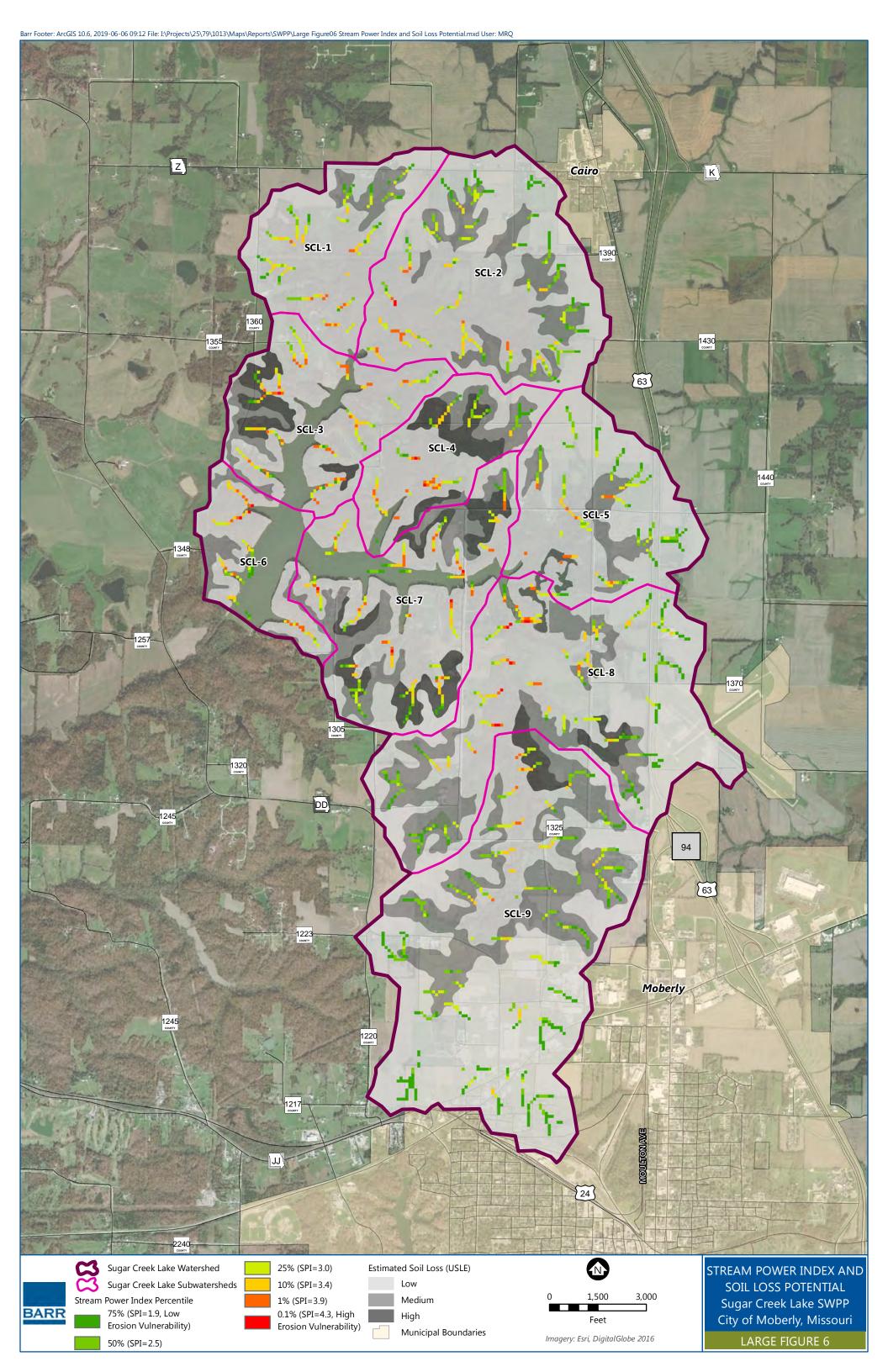
<u>Soil Unit Name</u>

60058

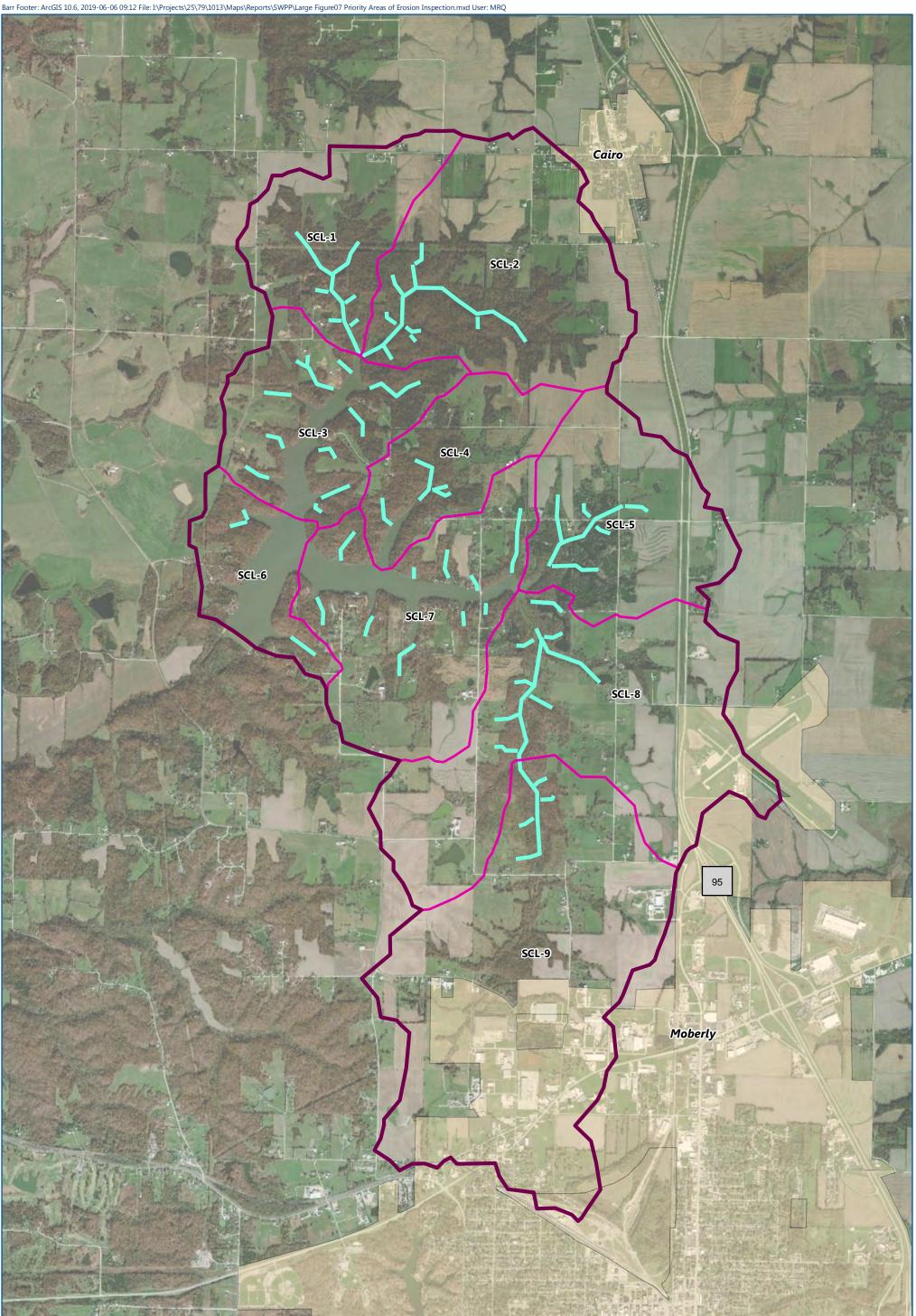
Bethesda channery silt loam, 20 to 70 percent slopes


- 50021 Calwoods silt loam, 2 to 5 percent slopes, eroded
- 30068 Gorin silt loam, 5 to 9 percent slopes, eroded
- Gosport silt loam, 14 to 30 percent slopes, eroded 50024

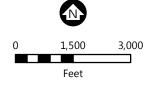
Keswick silt loam, 5 to 9 percent slopes, eroded 50008


- Keswick silt loam, 9 to 20 percent slopes, eroded 50030
- 60022 Leonard silt loam, 1 to 6 percent slopes, eroded
- Mexico silt loam, 0 to 2 percent slopes 50058
- 50059 Mexico silt loam, 1 to 4 percent slopes, eroded
- 66099 Piopolis silty clay loam, 0 to 2 percent slopes, frequently flooded
- 50012 Putnam silt loam, 0 to 1 percent slopes

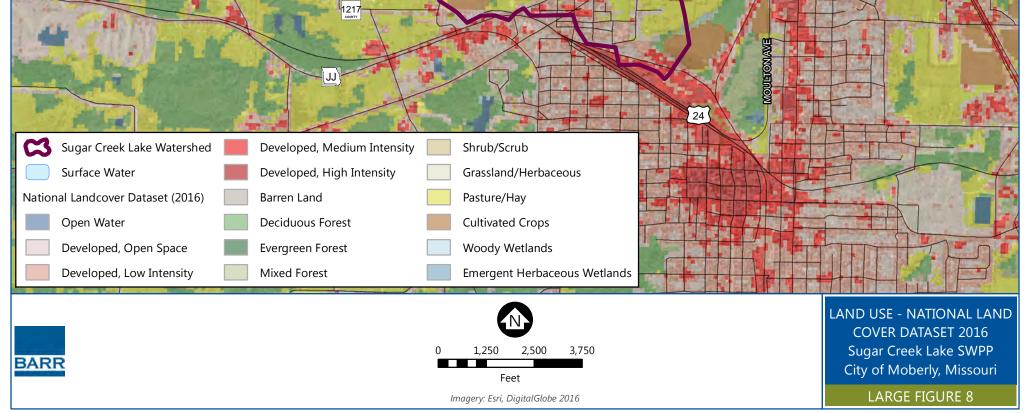
99001 Water

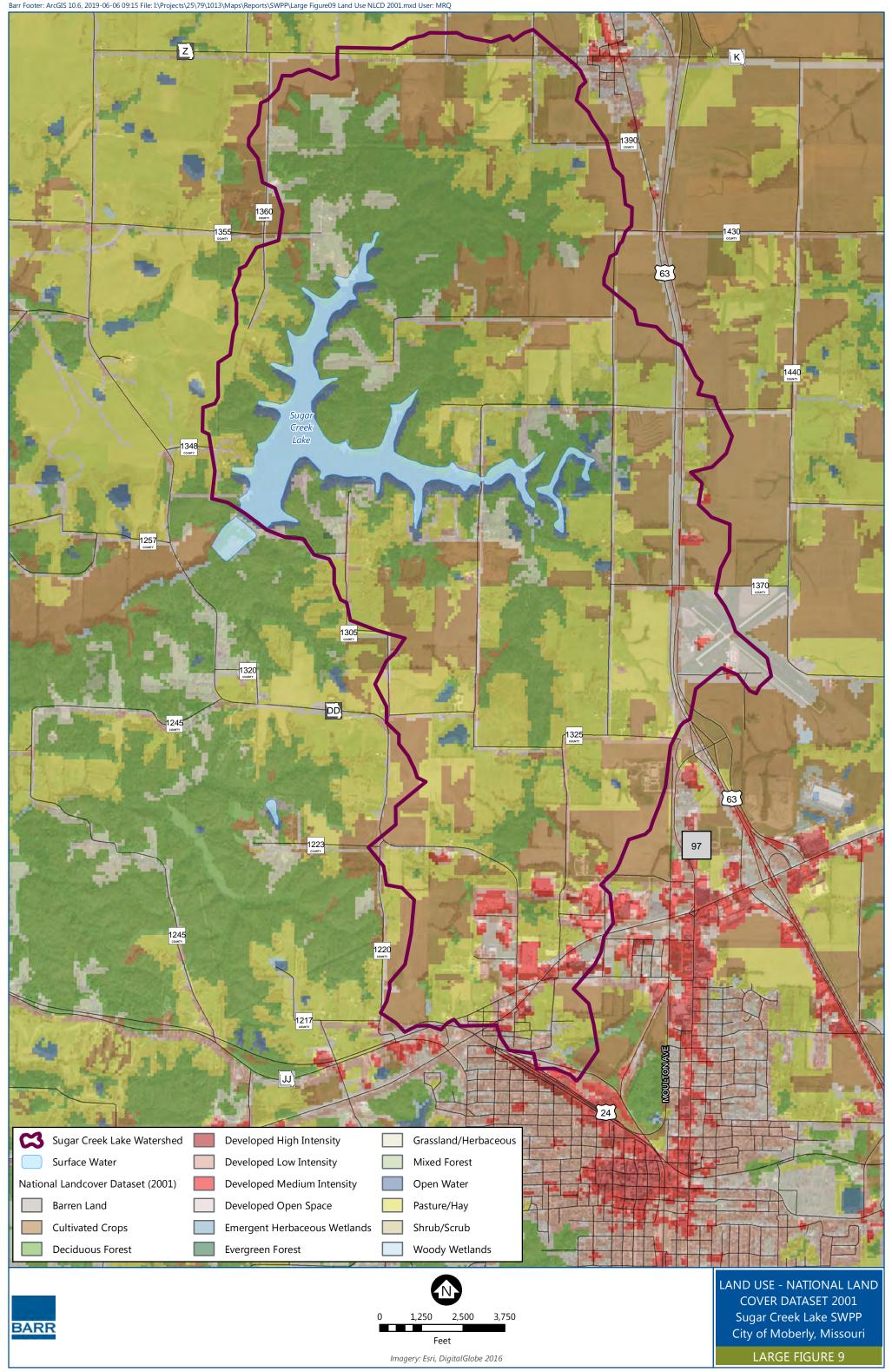


NRCS SOIL SURVEY MAP Sugar Creek Lake SWPP City of Moberly, Missouri

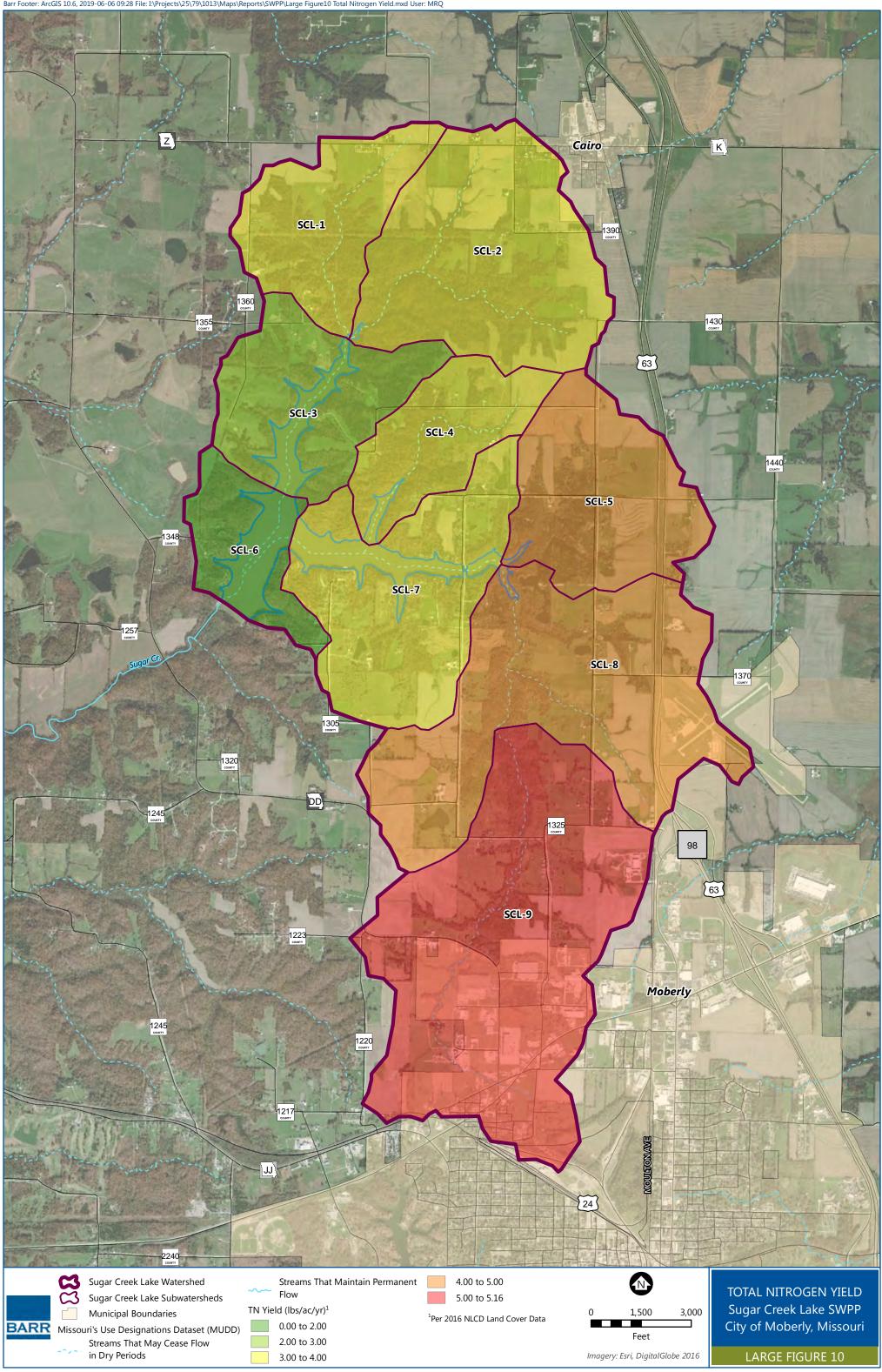


Sugar Creek Lake Watershed Sugar Creek Lake Subwatersheds High Risk Ravines for Erosion

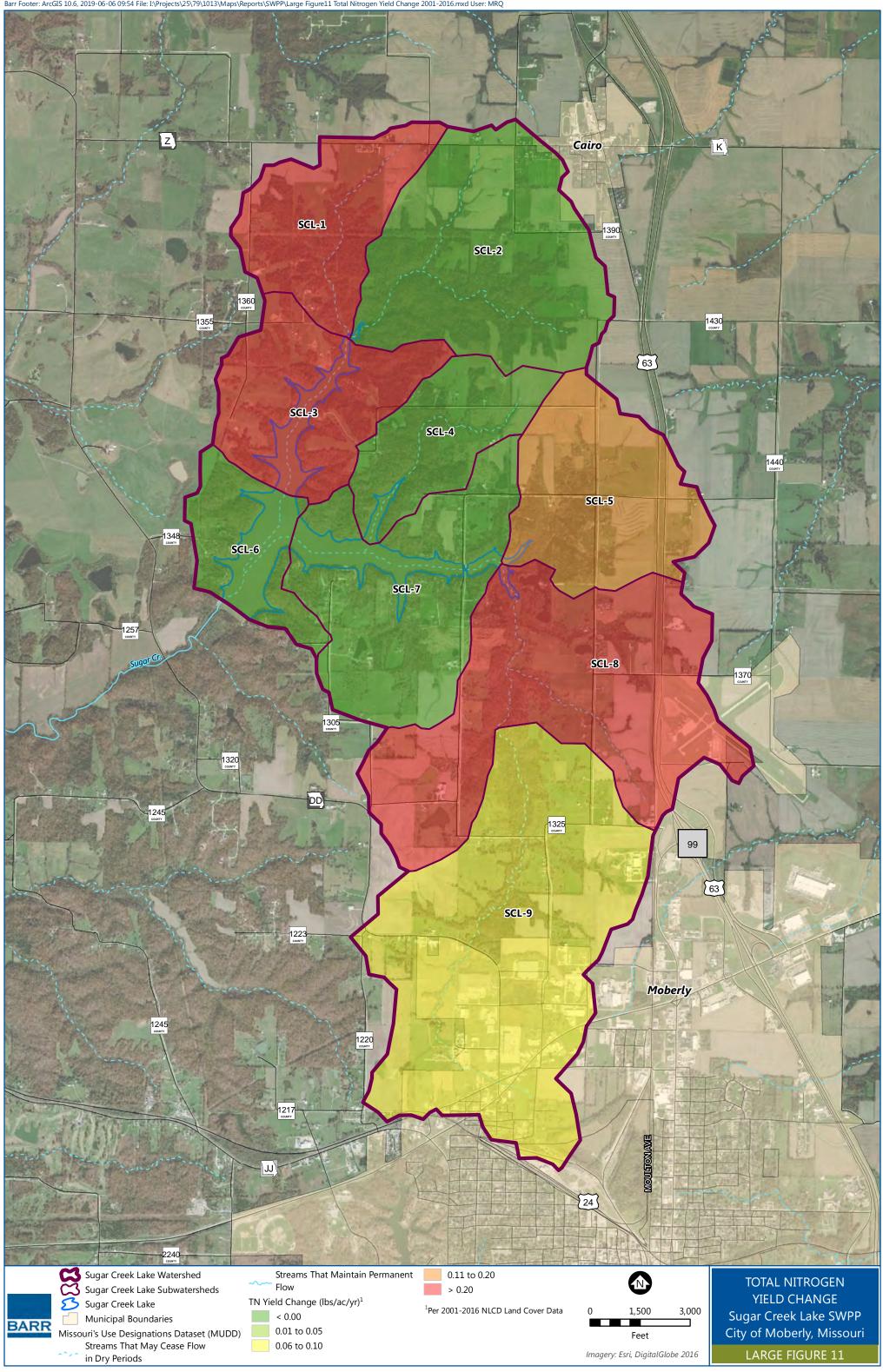

Municipal Boundaries

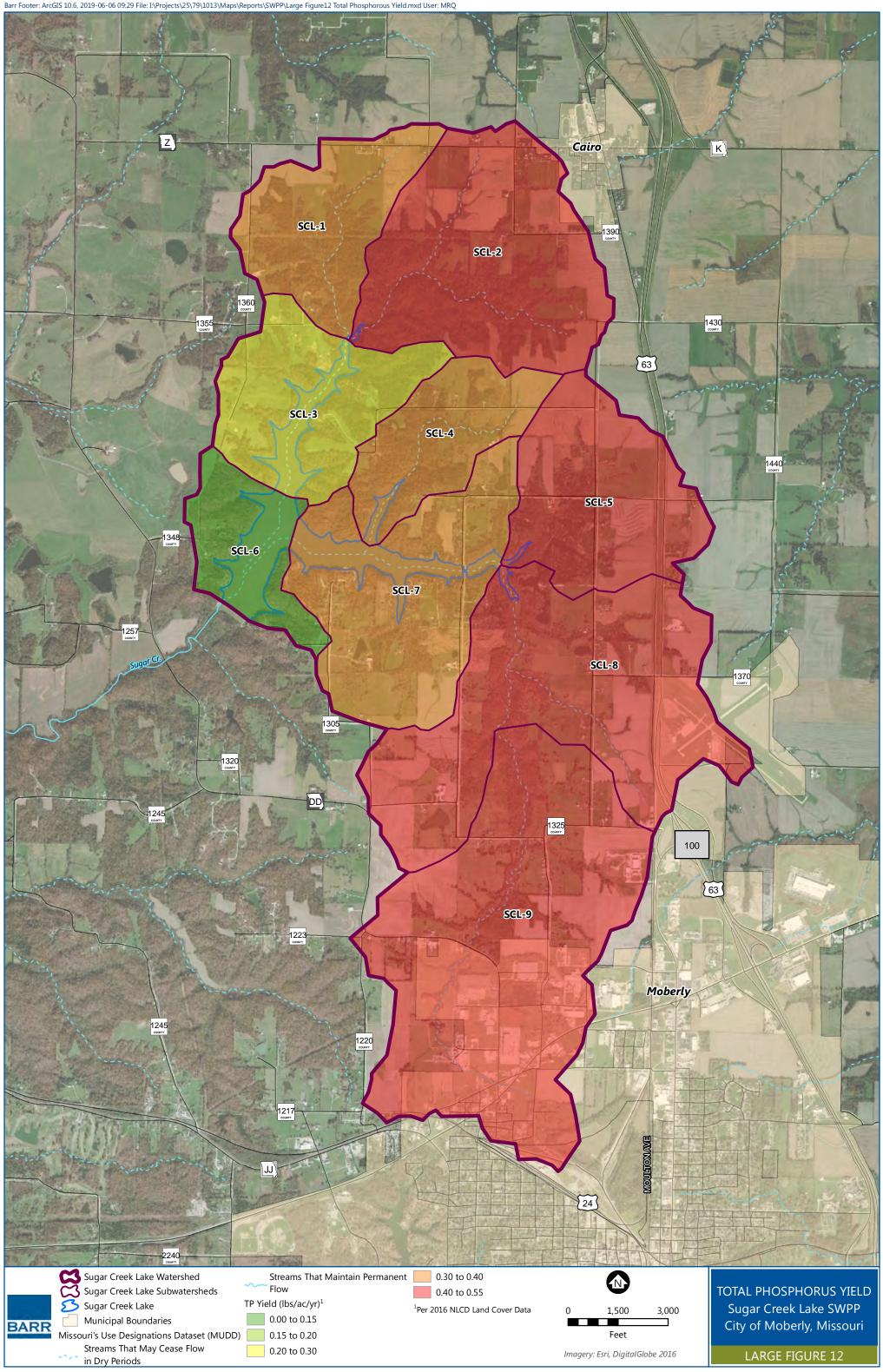


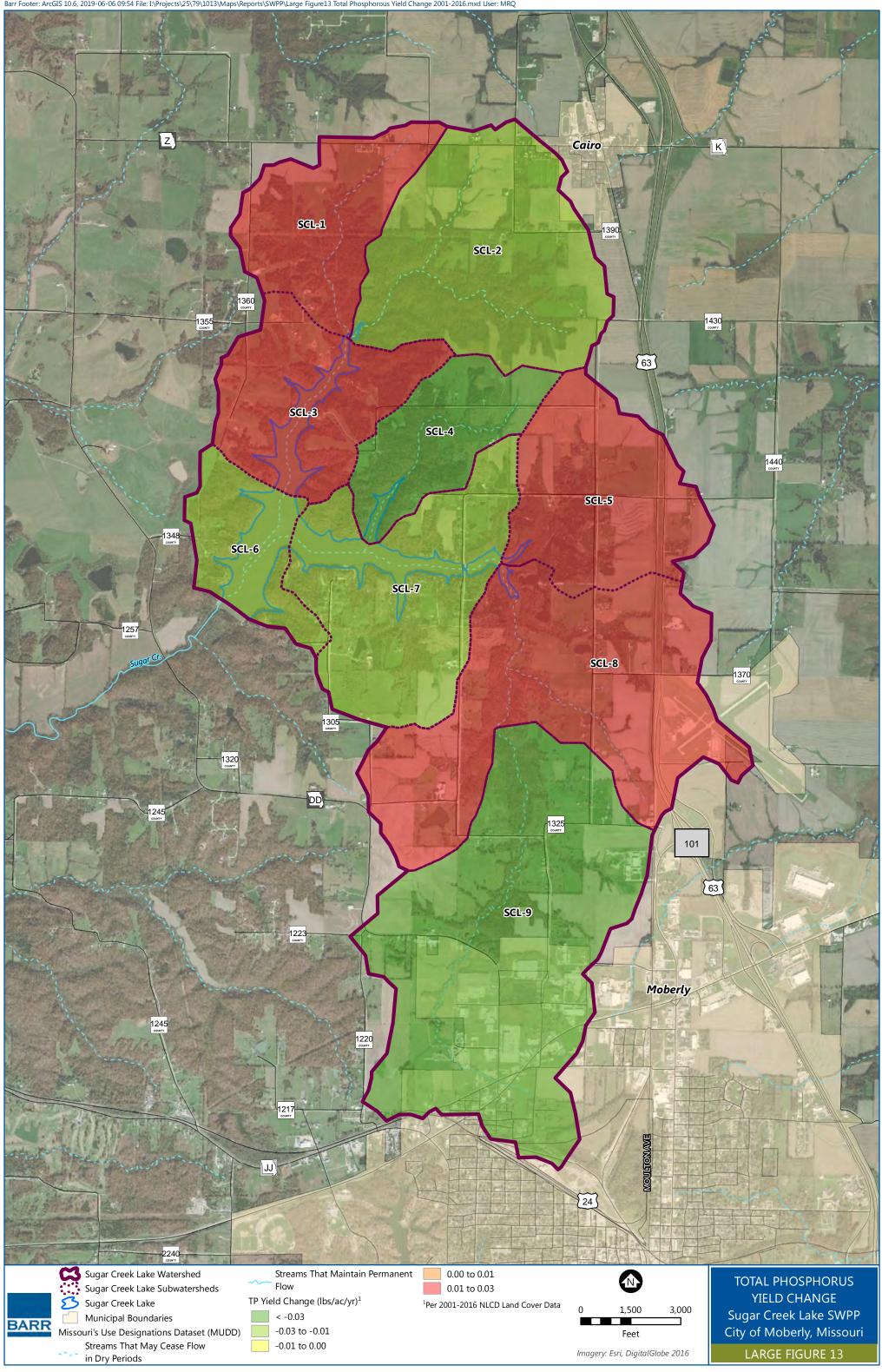
Imagery: Esri, DigitalGlobe 2016

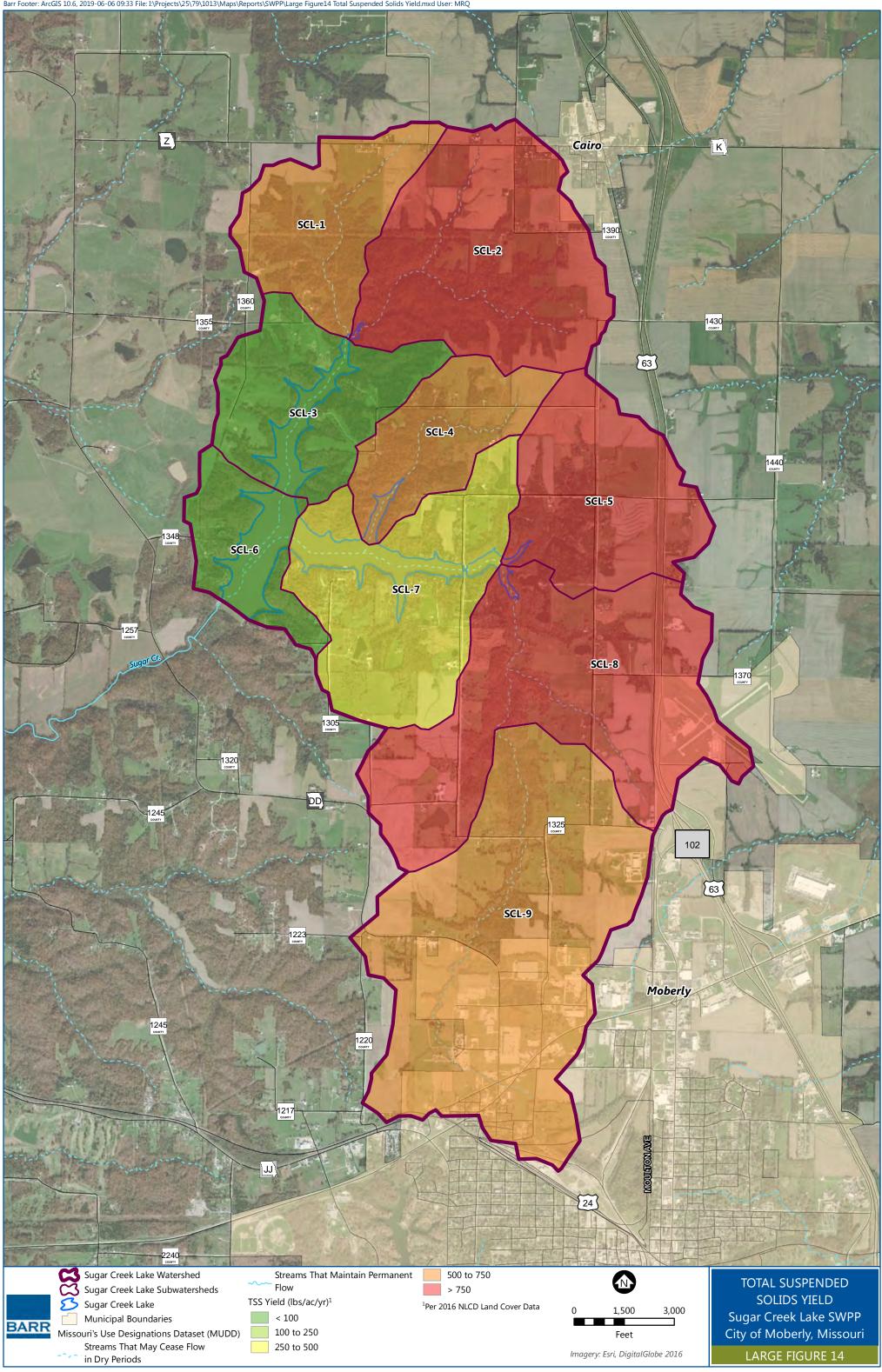

PRIORITY AREAS OF EROSION INSPECTION Sugar Creek Lake SWPP City of Moberly, Missouri

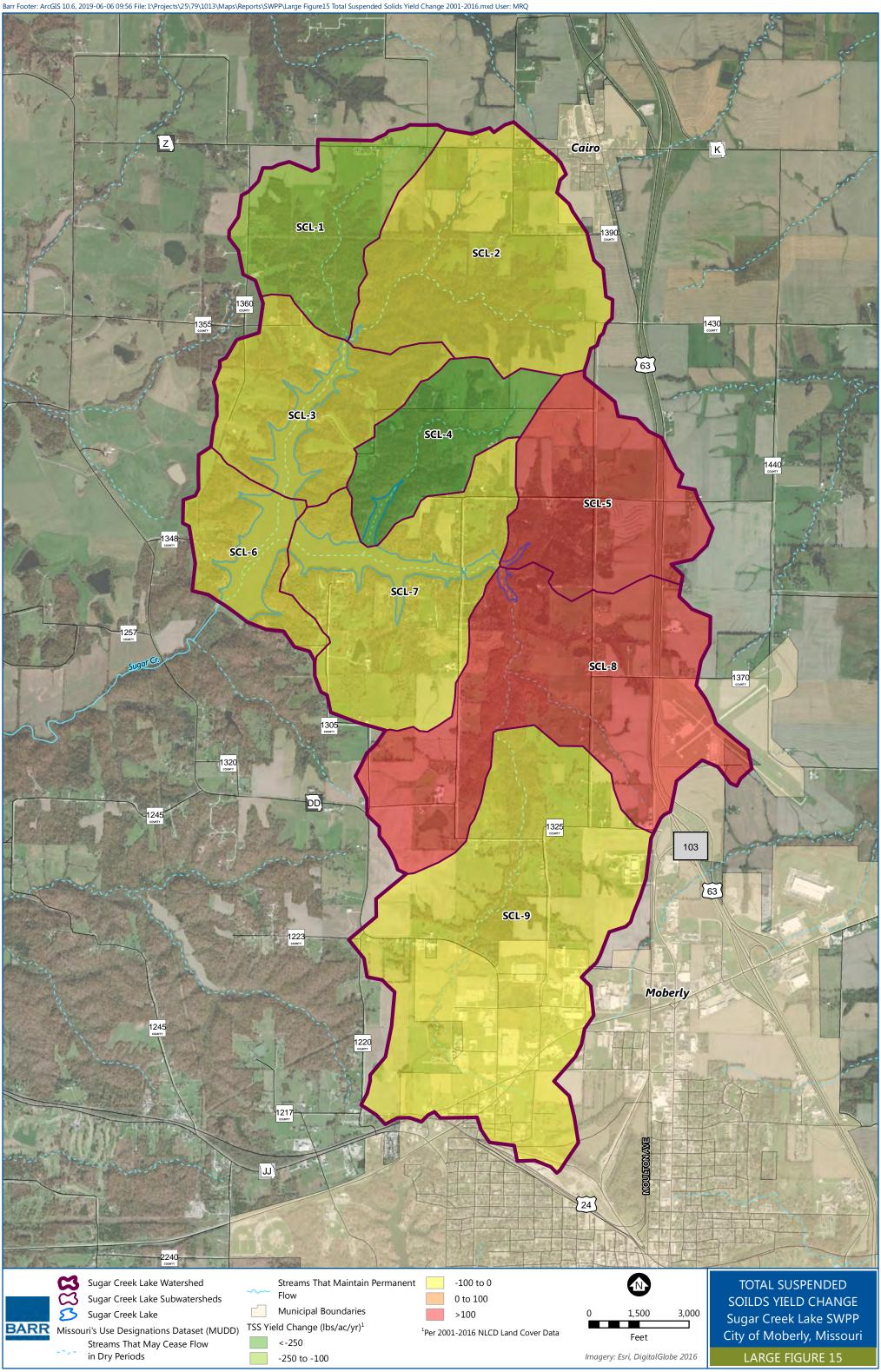
Barr Footer: ArcGIS 10.6, 2019-06-06 09:14 File: I:\Projects\25\79\1013\Maps\Reports\SWPP\Large Figure08 Land Use NLCD 2016.mxd User: MRQ

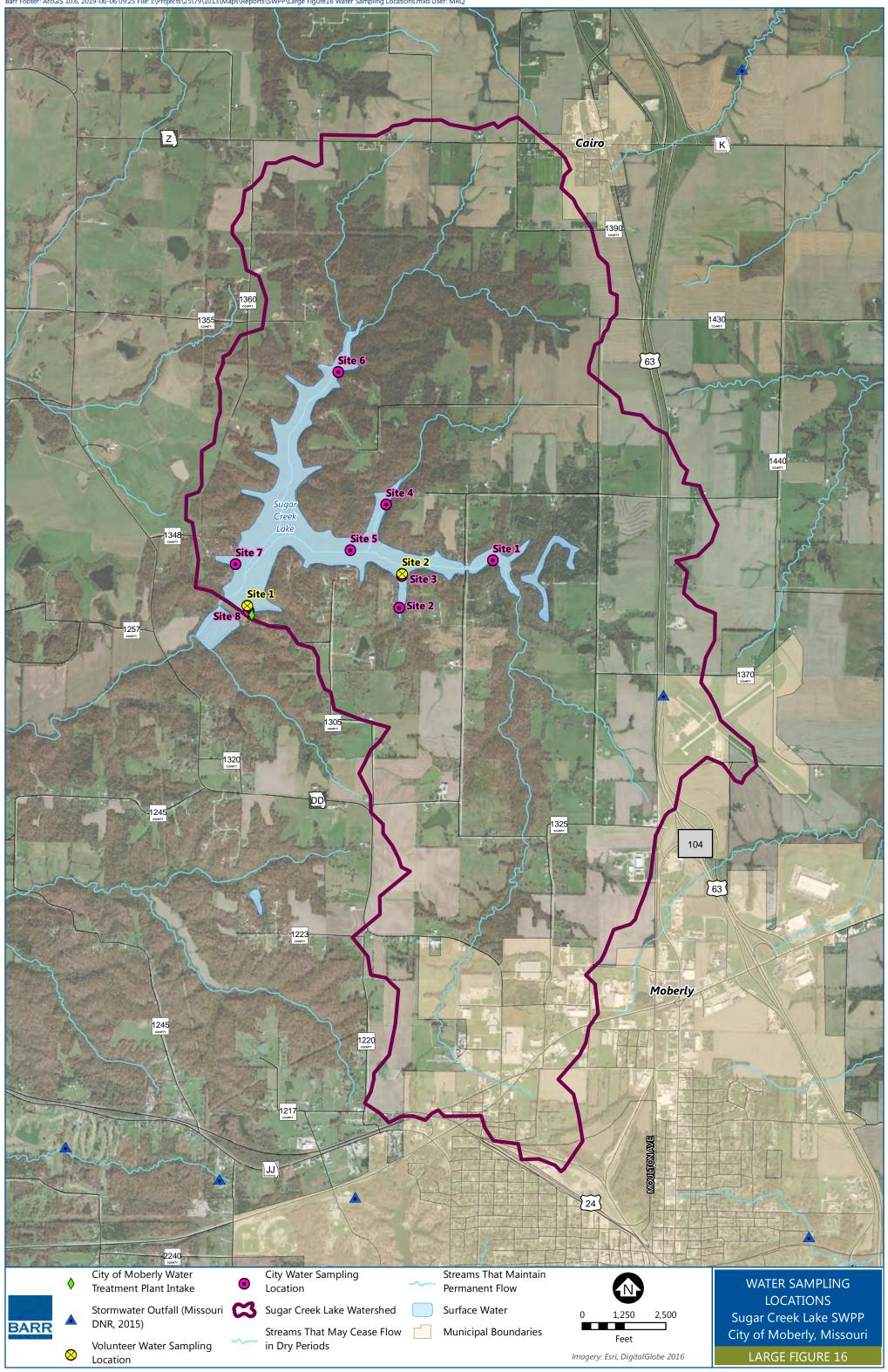


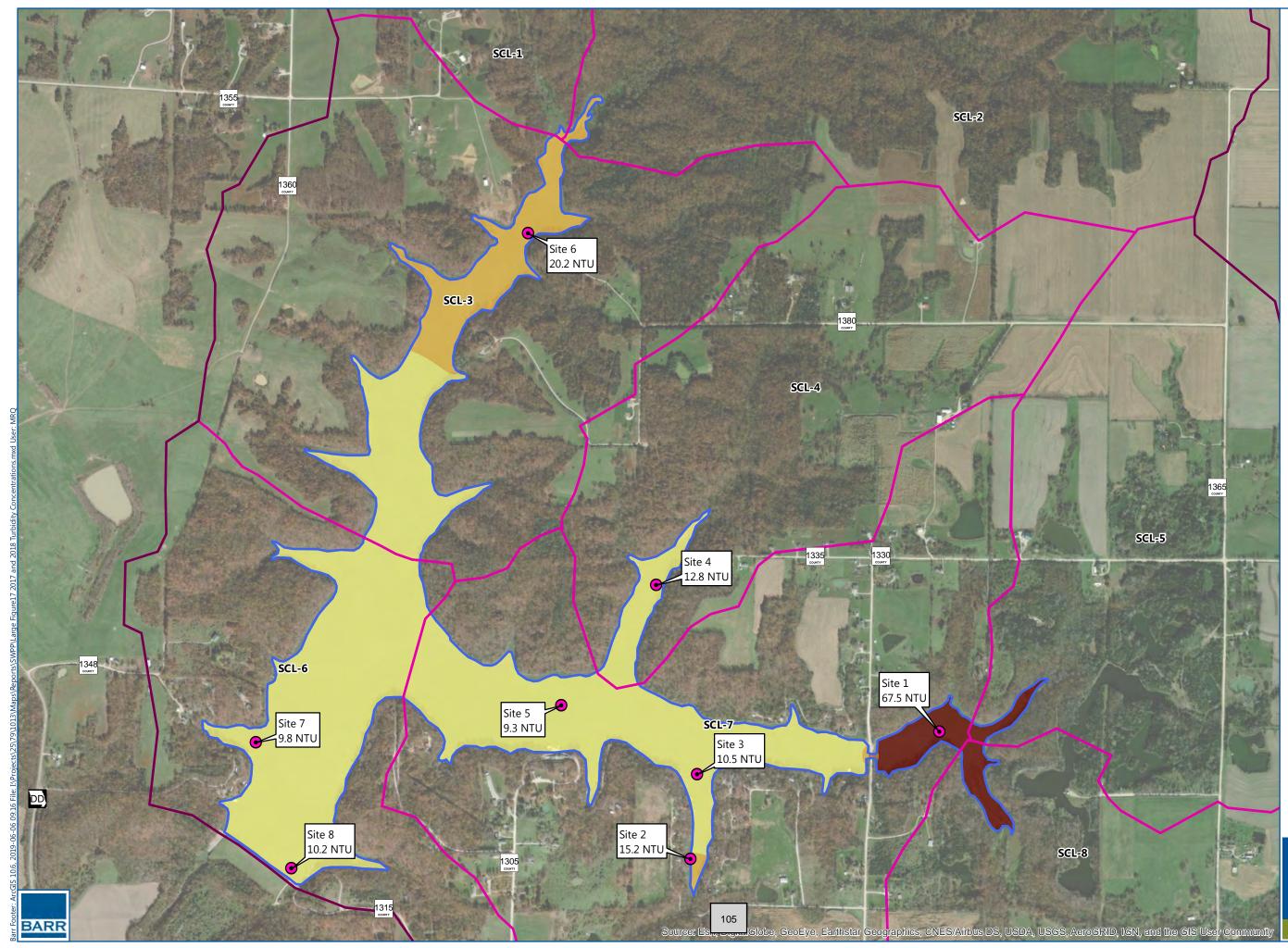

Barr Footer: ArcGIS 10.6, 2019-06-06 09:28 File: I:\Projects\25\79\1013\Maps\Reports\SWPP\Large Figure10 Total Nitrogen Yield.mxd User: MRQ


Barr Footer: ArcGIS 10.6, 2019-06-06 09:54 File: I\Projects\25\79\1013\Maps\Reports\SWPP\Large Figure11 Total Nitrogen Yield Change 2001-2016.mxd User: MRQ

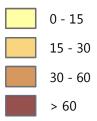

Barr Footer: ArcGIS 10.6, 2019-06-06 09:29 File: I:\Projects\25\79\1013\Maps\Reports\SWPP\Large Figure12 Total Phosphorous Yield.mxd User: MRQ


Barr Footer: ArcGIS 10.6, 2019-06-06 09:54 File: I\Projects\25\79\1013\Maps\Reports\SWPP\Large Figure13 Total Phosphorous Yield Change 2001-2016.mxd User: MRQ

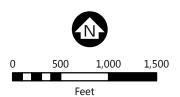

Barr Footer: ArcGIS 10.6, 2019-06-06 09:33 File: I:\Projects\25\79\1013\Maps\Reports\SWPP\Large Figure14 Total Suspended Solids Yield.mxd User: MRQ



Barr Footer: ArcGIS 10.6, 2019-06-06 09:25 File: I:\Projects\25\79\1013\Maps\Reports\SWPP\Large Figure16 Water Sampling Locations.mxd User: MRQ



• City Water S WS #6. Location


Sugar Creek Lake Watershed

Sugar Creek Lake Subwatersehd

2017-2018 Average Growing Season Turbidity (NTU) - May 1 - September 30

Randolph County parcel datset received by ClearBasin Software, September 2018

Imagery: Esri, DigitalGlobe 2016

2017 and 2018 TURBIDITY CONCENTRATIONS Sugar Creek Lake SWPP City of Moberly, Missouri

Appendices

Appendix A

2019 Sugar Creek Lake Yield Study

FIRM YIELD ASSESSMENT: SUGAR CREEK LAKE, RANDOLPH COUNTY, MISSOURI

By Karen Rouse, Emma Schneider

Executive Summary

Sugar Creek Lake in Randolph County Missouri is the sole water supply source for the City of Moberly. The City serves 12,174 people with an average daily use of 1.15 million gallons per day (MGD). In 2005, the Missouri Department of Natural Resources conducted a yield study of Sugar Creek Lake for the City of Moberly. The results indicated that if the community were to experience conditions similar to the drought of record (1951-1960), there would not be enough water in the reservoir to meet the City's water needs. In light of the results of the previous study, City managers have requested an updated yield study so that water planning efforts can be based on current data. The purpose of this study is to provide the City with an updated understanding of Sugar Creek Lake's capacity to meet the City's water demand during drought of record conditions. It is important to note for the purpose of this study it was assumed that no drought conservation actions were taken by the City of Moberly.

A new bathymetric study was conducted by the U.S. Geological Survey (USGS) in September 2018 to assess the volumetric capacity of the reservoir. The USGS study provided information on the magnitude of sedimentation that has occurred since the 2003 USGS bathymetry survey used in the 2005 yield study, and where within the reservoir that sedimentation occurred. The 2018 bathymetric study indicates that water storage has decreased by 240 acre-feet, or 4.6%, over the last 15 years. This equates to 78 million gallons of reservoir storage lost.

The data provided by the USGS was used as input data for HEC-ResSim, reservoir simulation software created by the U.S. Army Corps of Engineers. Two separate scenarios were simulated over an approximate 10 year period in HEC-ResSim. One scenario examined only water demand and reservoir yield. The second scenario included seepage from the reservoir as well as water demand and reservoir yield. For the purpose of this study 1.33 MGD was used to represent the daily demand, as that is the average demand over the past 25 years. From these analyses, the model indicates that if the current rate of seepage continues, Sugar Creek Lake can only yield 1.17 MGD if a similar drought to the 1950s drought were to recur. During the roughly 10 year drought period, the reservoir would not be able to provide water for a total of 146 days spread across three separate periods. Thus, were seepage not addressed, the reservoir would not be able to meet the City's water demand during drought of record conditions. When the current seepage rate is not included in models, the reservoir can yield 1.44 MGD over the 10 years; however, there are several periods where the reservoir nears insufficient water supply conditions. For a total of 300 days the surface of the reservoir is less than 3 feet above minimum operational elevation; on 14 of those days the surface of the reservoir is less than 0.5 feet above minimum operational elevation.

1

FIRM YIELD ASSESSMENT: SUGAR CREEK LAKE

WS #6.

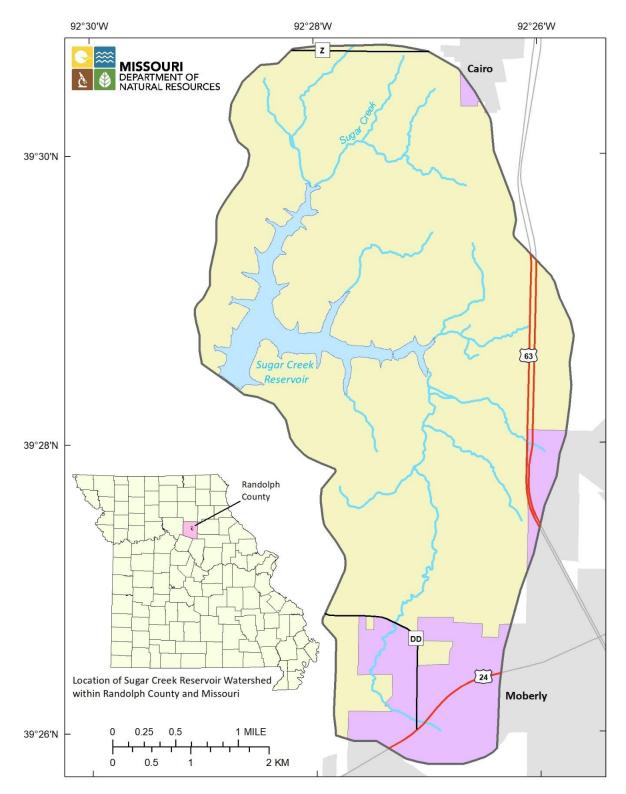


Figure 1. Sugar Creek Lake and Watershed. The reservoir and its drainage area in relation to the City of Moberly.

Introduction

Sugar Creek Lake is a 333-acre reservoir with a drainage area of 11 square miles and is the sole source of water for the City of Moberly (Figure 1). A 2005 study of Sugar Creek Lake (Edwards, Chen, & McIntosh, 2005) determined that the reservoir would not be able to meet the City's water demand should conditions similar to the drought of record (1951-1960) recur. In 2018, City of Moberly water managers requested an update to the 2005 study to determine Sugar Creek Lake's available yield for water supply planning purposes.

Surface Water Supplies in Missouri

Most surface water supplies in Missouri are located north of the Missouri River in areas of glacial till. Groundwater resources in this region are poor due to high mineral content and insufficient pumping yields.

Following the 1999-2000 drought, the Missouri Department of Natural Resources prepared an analysis of 44 communities' water systems. Included were 40 drinking water reservoirs and four systems that utilize streams as their main water supply source. The study analyzed reservoir storage volumes and water demand against drought of record conditions in Missouri and found that many communities would need supplemental inflows to maintain water service to customers should a similar drought occur (Edwards, Chen, & McIntosh, 2005).

Hydrologic Setting

Mean annual precipitation in Missouri varies from a low of 34 inches in northwest Missouri to a high of 50 inches in the southeast. The City of Moberly of Randolph County, Missouri is approximately two miles south of Sugar Creek Lake and receives an average of 43 inches of rainfall each year. Between 1936 and 2019 the area had a historical high of 65 inches of precipitation in 2008 and a historical low of 22 inches in 1988 (Midwestern Regional Climate Center, 2019). Sugar Creek Lake, the primary water source for the City of Moberly, has a drainage area of 11.05 square miles and is fed by Sugar Creek and a few small, unnamed tributaries. Discharges from Sugar Creek Lake flow into the East Fork Chariton River approximately 4.6 miles downstream from the dam. Reservoir levels are manually monitored with a staff gage located on the adjustable intake in the southeast corner of the reservoir (Figure 2).

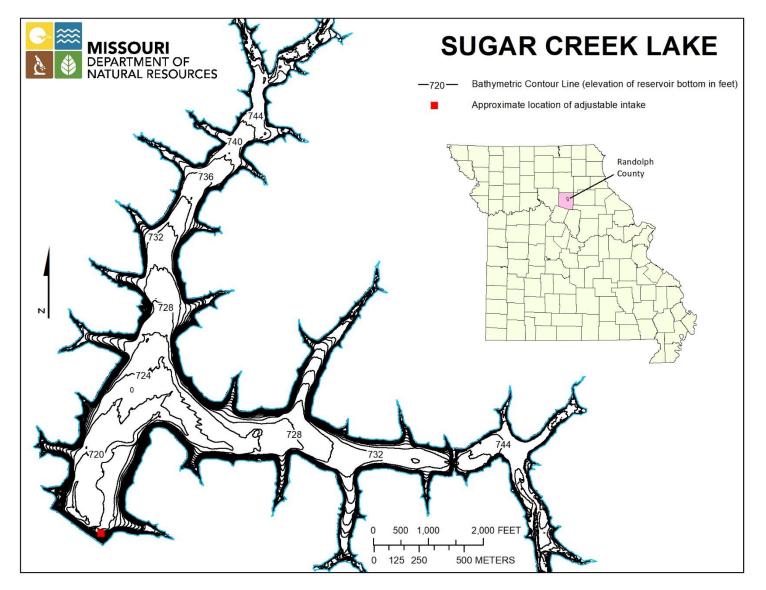


Figure 2. Bathymetric Map of Sugar Creek Lake. Contours indicate the elevation of the bottom of the reservoir as surveyed by the USGS in September of 2018. Contours are at 2-foot intervals.

The City of Moberly serves a population of approximately 12,174 with an annual water demand of 1.15 million gallons per day according to the 2019 Census of Missouri Public Water Systems (Missouri Department of Natural Resources, 2019). The City of Moberly's water demand has gradually decreased from 2.4 MGD to 1.1 MGD since 1987 (Figure 3) likely due to the loss of customers and improvements in water efficient appliances and fixtures. For example, the City of Moberly supplied water to a public water district until 1992. In 1992 the City stopped supplying water to that district, decreasing its water demand. From 1992 to 2017, the City's 26-year average water demand was 1.33 million gallons per day (MGD).

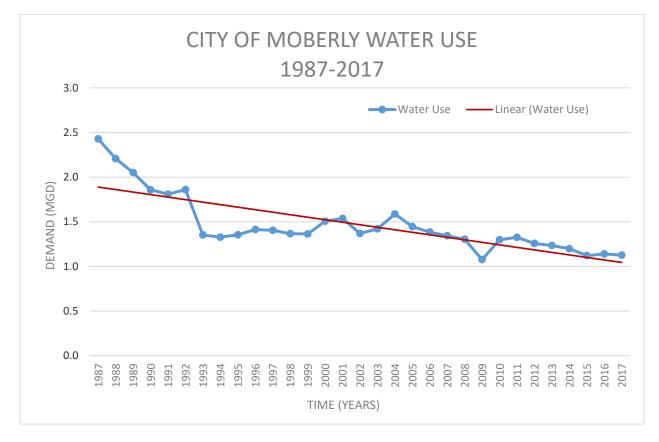


Figure 3. The City of Moberly's water use has declined since 1987 likely due to the loss of water customers and improvements in water efficient appliances and fixtures.

5

Methods

The USGS bathymetric survey of Sugar Creek Lake was conducted using a multi-beam echo sounder from September 4-6, 2018. Areas of the reservoir too shallow to be surveyed by boat were either supplemented with LIDAR data or interpolated from the 2003 bathymetric survey (Richards & Huizinga, 2019).

The bathymetric survey was not only instrumental in understanding the current volume of the reservoir but also in understanding the impact of sedimentation on water supply intakes. The City has two intakes: an adjustable intake that could withdraw water between elevations 752.28 and 729.78 feet, and a lower, fixed intake set at 717.78 feet. The intakes are located in the southeast corner of the reservoir, near the dam. The bathymetric survey showed sufficient sedimentation in the area of the reservoir near the intakes to render the lower, fixed intake unusable without removing the sediment. Therefore, with the concurrence of City water operators, the effective minimum operational elevation for this study is 729.78 feet.

Data from the area-capacity table (Table 1) generated from the USGS bathymetric data was used to perform a yield analysis using Reservoir System Simulation (HEC-ResSim). HEC-ResSim is a simulation program developed by the US Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center. HEC-ResSim is a tool with the capability to model large complex reservoir systems as well as small, relatively simple systems (HEC-ResSim, 2019). Once a model is created in HEC-ResSim, operational conditions can be defined and simulations run to study how systems will react in different scenarios. In this situation HEC-ResSim was utilized to simulate drought conditions.

Sugar Creek Lake Area-Capacity									
Elevation (feet)	Storage (acre-feet)	Area (acre)	Notes						
716.46	0	0	Lowest elevation in reservoir						
718	0.4	1.5							
720	18.0	18.2							
721	44.5	35.0							
722	86.3	48.3							
724	211	77.5							
726	393	104							
728	627	129							
729	762	142	Minimum Operational Storage Elevation						
730	910	155							
732	1245	181							
734	1631	206							
736	2065	227							
738	2536	243							
740	3036	257							
742	3566	275							
744	4133	291							
746	4746	326							
746.8	5010	333	Spillway Elevation						

Table 1. Reservoir elevations and respective surface areas and volumes. Approximate elevation of spillway structure is 746.8 feet. Elevations referenced to North American Vertical Datum 1988 (NAVD 88). Note: Volumes calculated from surface testing 0.91 feet vertical accuracy at 95 percent confidence level

Inflow Data

The Sugar Creek Lake watershed lacks the necessary instrumentation to directly determine the volume of water flowing into the reservoir. Therefore, it was necessary to obtain streamflow data from a watershed of similar soil type and topography. The U.S. Geological Survey (USGS) operates a streamgage on Moniteau Creek near Fayette, MO (USGS 06909500). Observations from this gage were used during the 2005 study and were again used in this analysis. The drainage area for the streamgage's location is 75.1 square miles which is considerably larger than the 11 square mile drainage area of Sugar Creek Lake. To account for the difference in drainage area, the runoff data for USGS 06909500 was proportionately reduced to apply to Sugar Creek Lake's watershed.

Example: On March 5, 1948 the mean runoff recorded at USGS 06909500 was 38 cubic feet per second (cfs). The model input data for Sugar Creek was therefore 5.7 cfs (38 cfs x 0.15 = 5.7 cfs).

Seepage

Sugar Creek Lake Dam is a regulated dam (MO10005) and has a history of a seepage issues first documented in 1979 when Burns & McDonnell conducted a dam inspection. Based on the Dam Inspection Report, Sugar Creek Lake Dam was found to have seepage issues in the east and

west abutments. Burns & McDonnell recommend a grouting program to alleviate the situation (Burns & McDonnell, 1979). In 1983, the Land Reclamation Commission requested that the MoDNR conduct an inspection focusing on the impacts of mining operations in the area. Despite grouting programs carried out as suggested in the 1979 Burns & McDonnell inspection, MoDNR found that there was still a seepage issue in one of the abutments (Howe, 1983).

For this study City of Moberly provided numbers quantifying the seepage flow rate at varies reservoir elevations. It is estimate that there is a seepage rate of 720 gallons per minute (GPM) when the reservoir is at full pool (elevation of 746.8 feet) and a seepage rate of 150 gpm when the reservoir is 25 inches below full pool (elevation 744.72 feet). The information provided was plotted on a scatter plot and a line of best fit was assigned to the data. Points generated from the line of best fit were entered into the simulation program where it interpolated a relationship between seepage flow rate and elevation.

Evaporation

Monthly pan evaporation rates recorded at the Lakeside gage near Lake of the Ozarks from 1951 to 1960 were used to estimate the evaporation While Lakeside gage had the most extensive data points for evaporation during the drought of record there were two locations closer to Sugar Creek Lake. When values were available from Columbia, Missouri or New Franklin, Missouri the Lakeside data was replaced. The pan values were multiplied by 0.76 to convert from pan evaporation to lake evaporation. Monthly averages were calculated for the 10 year period and the following values were used in the simulation:

<u>Month</u>	Evaporation (inches)
January	0.75
February	1.41
March	2.26
April	3.95
May	4.84
June	5.47
July	6.03
August	
September	
October	3.05
November	1.81
December	0.91

Table 2. Evaporation Table. Average monthly values from 1951 to 1960.

Scenario Analyses

Two scenarios were modeled using HEC-ResSim to determine if the reservoir has sufficient yield to meet current water demands under drought of record conditions. The first scenario analyzed current demand and yield without seepage. Current demand was considered to be 1.33 million gallons per day (MGD) which is the 25-year average of recorded water demand between 1993 and 2017. The demand was then applied to the drought of the 1950s to determine the available yield. Seepage was accounted for in the second scenario with the same demand and drought parameters as the first scenario.

The scenarios represent two categories of demand and yield: without seepage and with seepage. Without seepage demand is defined as the amount of water the community requires in order to meet water demands. Yield is how much water can be withdrawn from the reservoir before the water surface reaches the minimum operational elevation. In scenario 2, when

seepage is included, the definitions of demand and yield change. With seepage demand is defined as the amount of water the community requires plus the maximum amount of water that could be lost to seepage. Yield has the same definition as before, however, the amount available to be withdrawn will be less in this scenario because the reservoir surface elevation will be lower due to seepage outflow.

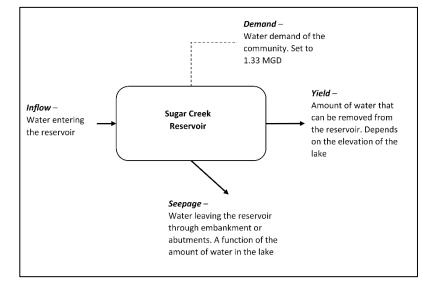


Figure 4. Schematic of water balance for Sugar Creek Lake.

Results

Current Demand	1.33 MGD
Current Demand With Seepage	2.58 MGD
Yield	1.44 MGD
Yield With Seepage	1.17 MGD

Table 3. Results from the HEC-ResSim models

Scenario 1 – No Seepage

Scenario 1 model results indicate that Sugar Creek Lake, with a demand of 1.33 MGD, could yield 1.44 MGD over 10 years as shown in Figure 6. Under these conditions there would be sufficient yield to meet demand during an extended drought. However, there was a period of time in which the reservoir nears insufficient water supply conditions. For a total of 300 days out of 3,560 days the reservoir was less than 3 feet above operational elevation and less than 0.5 feet above operational elevation for 14 days (Figure 8).

Scenario 2 - Seepage

Scenario 2 models conditions over the same period as Scenario 1 with the inclusion of seepage. Under this scenario, Sugar Creek Lake would yield 1.17 MGD (Table 3) when applying the current demand of 2.58 MGD (demand + seepage). The results indicate the yield is insufficient to meet the current demand resulting in three periods of supply deficiency (Table 4).

Period 1	November 24, 1954 January 4, 1955	41 Days	1.37 Months
Period 2	February 12, 1955 February 15, 1955	3 Days	0.10 Months
Period 3	December 13, 1956 March 25, 1957	102 Days	3.40 Months

Table 4. Periods of deficiency. Where yield was insufficient to meet demand during Scenario 2 - With Seepage

Sedimentation

The effects of sedimentation on reservoir volume were calculated by comparing the results of the two bathymetric surveys conducted in 2003 and 2018. The difference in the elevations of the reservoir bottoms between surveys represents sediment depth. There has been sediment deposition of 1 to 1.5 feet throughout the reservoir (Figure 9). Storage-elevation curves were calculated from both surveys. Figure 10 shows that sedimentation has resulted in a 240 acrefoot reduction in water storage volume at full pool over 15 years, representing a decrease of 4.6%.

To better understand the impacts of the sedimentation noted from 2003 to 2015 in Sugar Creek Lake, a simulation was run using the storage curves from 2003, 2018, and 2033. The 2033 storage curve was generated assuming the 4.6% loss in storage from 2003 to 2018 would occur in the next 15 years. The storage curves can be seen in Figure 8. As the focus of this analysis was to see the impact from sedimentation on yield assuming seepage was still occurring the only factor changed from simulation to simulation was the storage curve. The results shown in Tables 5-7. Over 30 years the sedimentation increased the number of insufficient yield days by 12 days.

2003 - Storage of 5250 ac-ft				2018 - Storage of 5010 ac-ft			2033 - Storage of 4781 ac-ft							
	30-Nov-1955				24-Nov-1954		6-Nov-1954 Period 1		49 Days	1.63 Months				
Period 1	4-Jan-1955	35 Days	1.17 Months	Period 1	4-Jan-1955	41 Days	Days 1.37 Months	41 Days 1.37 Months		1.37 Months	Fenou I	4-Jan-1955	49 Days	1.03 10011015
	4-Jan-1955				4-Jail-1955				5-Feb-1955					
Dania d 2	13-Feb-1955	2.0	0.07 Mautha	Davia d 2	12-Feb-1955	3 Days 0.10 Months	Period 2	6-Feb-1955	1 Day	0.03 Months				
Period 2	15-Feb-1955	2 Days	0.07 Months	Period 2	15-Feb-1955		3 Days	5 Days	5 Days	5 Days	0.10 Months	Period 3	9-Feb-1955	6 Days
	0.0.4056				12.5.1056			Feriou 5	15-Feb-1955	0 Days	0.20 10101113			
Period 3	9-Dec-1956	106 Days	3.53 Months	Period 3	13-Dec-1956	102 Days	3.40 Months		16-Dec-1956					
	25-Mar-1957				25-Mar-1957			Period 4	25-Mar-1957	99 Days	3.30 Months			
Total Days	of Insufficient Yi	eld	143	Total Days	Total Days of Insufficient Yield 146			Total Days of Insufficient Yield 155			155			
Total Days	Total Days of Simulation Period 3560			Total Days	Total Days of Simulation Period 3560			Total Days of Simulation Period 3560			3560			

Tables 5-7. The series of tables show the periods of yield for 2003, 2018, and 2033. Each year assumes 1.33 MGD of demand with seepage factored in. The total storage for each year is listed in the table header.

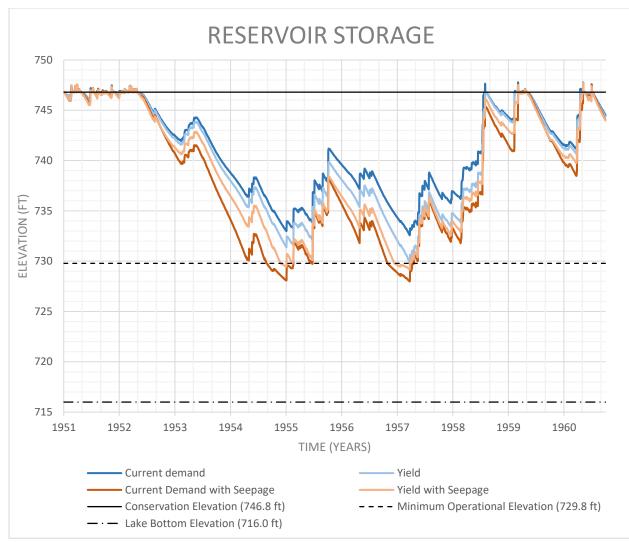


Figure 5. Reservoir Surface Elevation from Scenarios 1 and 2. HEC-ResSim results from 1951-1960, the drought of record period. The elevations of the bottom of the reservoir, the minimum operational level, and the conservation level are marked. The blue lines represent Scenario 1 – Without Seepage and the orange lines represent Scenario 2 – With Seepage.

12

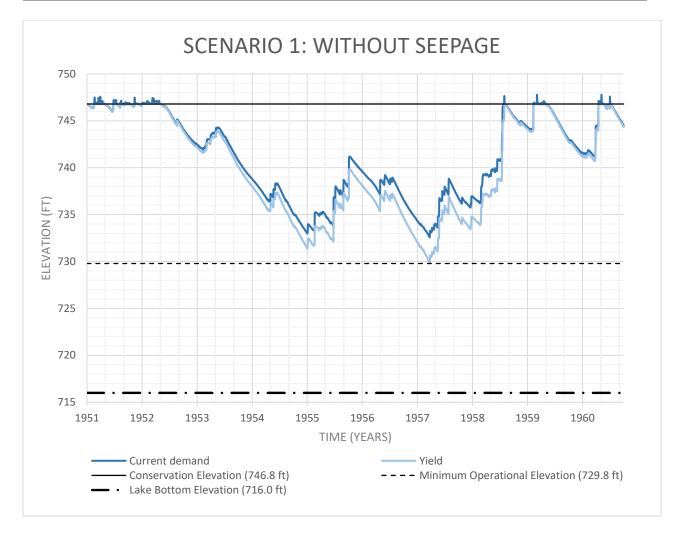


Figure 6. Scenario 1 – Without Seepage HEC-ResSim Results. Results from 1951-1960, the drought of record period. The elevations of the bottom of the reservoir, the minimum operational level, and the conservation level are marked. The dark blue line represents the demand and the light blue line represents the yield.

13

WS #6.

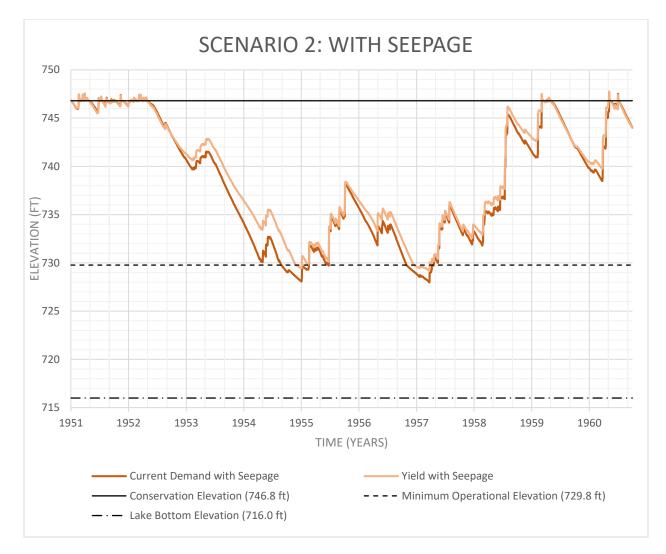


Figure 7. Scenario 2 – With Seepage HEC-ResSim Results. Results from 1951-1960, the drought of record period. The elevations of the bottom of the reservoir, the minimum operational level, and the conservation level are marked. The dark orange line represents the demand and the light orange line represents the yield.

14

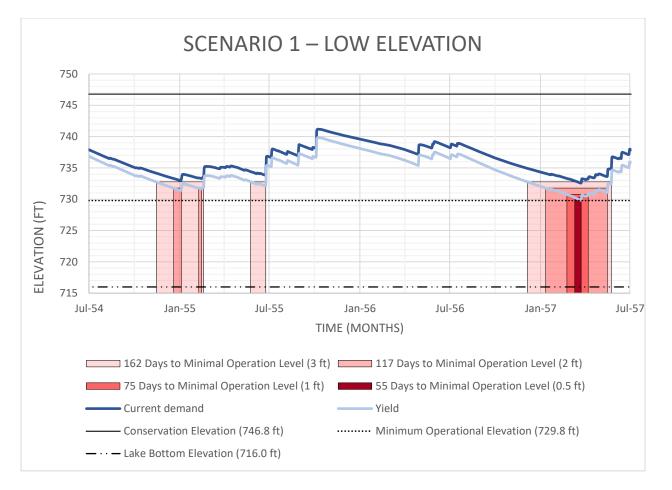


Figure 8. Scenario 1 – Without Seepage Low Elevation Warnings. While the simulation period is from 1951-1960, from 1954 to 1957 there were 3 periods where low elevations in the reservoir were noted. The feet listed next to the number of days indicated how many feet the yield was from the minimum operational elevation.

15

122

WS #6.

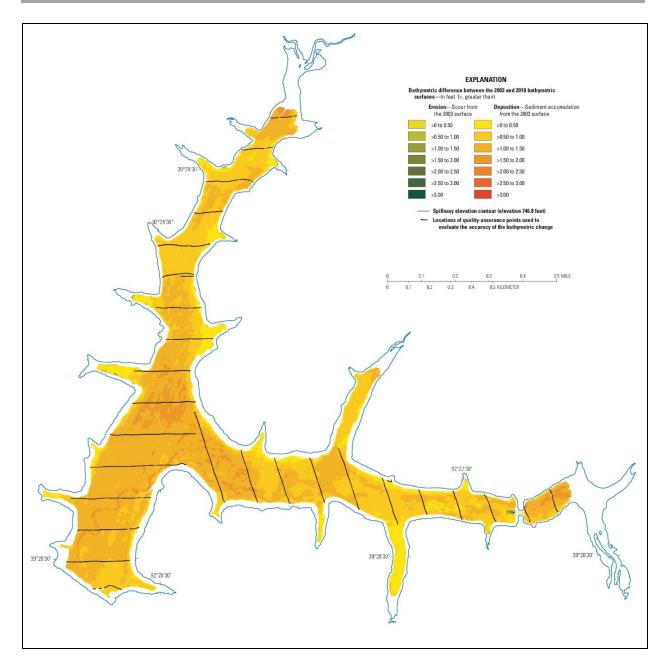


Figure 9. Bathymetric survey change since 2003 study. Change can represent either sediment deposition or erosion. Source: USGS

123

WS #6.

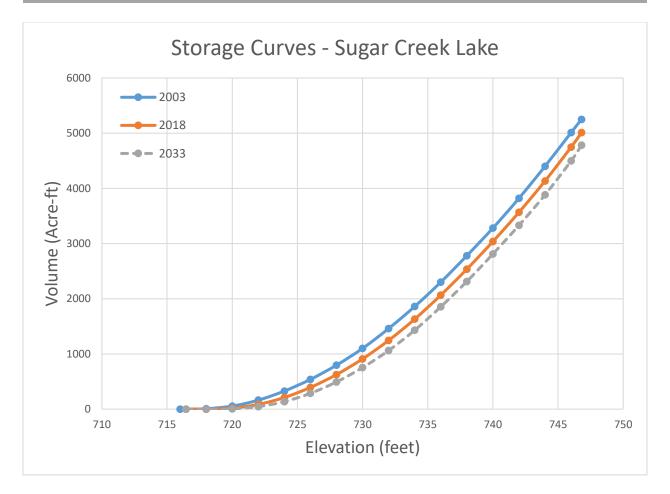


Figure 10. Storage-Elevation curves calculated from bathymetric surveys for the years 2003 and 2018. 2033 is a projected storage curve developed assuming a 4.6% loss of storage would occur from 2018 to 2033. Storage volume was lost at all elevations of the lake between surveys.

17

Discussion

At full pool, approximately 1 MGD of water is being lost to seepage, which would be critical to the City's water supply if a sustained drought were to occur. Seepage is not necessarily a structural concern for the dam itself, but the City is losing water that would be valuable during drought. It is recommended that the City take steps to reduce the volume of water lost to seepage.

Sedimentation is also a key contributor to the decrease in yield since the 2003 bathymetric survey. A 240 acre-foot reduction is equivalent to 78 million gallons or approximately 58 days of supply, which could assist in meeting demand during an extreme drought. The location of deposited sediment is also of concern since it is likely that the bottom, fixed intake is inaccessible. The intake is located in the southeast corner of the reservoir at elevation 717.78 feet. According to the 2018 USGS bathymetry survey, that section of the reservoir has a bottom elevation of 730 feet. Therefore, the intake is likely under approximately 12 feet of sediment. It is recommended that the City create a management plan to ensure access to available water should the need arise to use the lower, fixed intake.

The City currently has to visually estimate the level of the reservoir (Figure 11) by the use of bars attached to the intake platform at one-foot intervals above and below normal pool. This method of measuring reservoir levels has limited precision. Installing a USGS lake gage would enable the City to monitor reservoir levels with much greater precision. Such USGS lake gages are located in Montgomery City, Concordia, Stanberry, and Marceline.

Furthermore, it would be beneficial to install a streamgage on Sugar Creek upstream of the reservoir. A gage in this location would provide more accurate information on the amount of inflow to the reservoir, improving data inputs for future yield studies.

Figure 11. The City currently has to visually estimate the level of the reservoir by the use of bars (example circled) attached to the intake platform at one-foot intervals above and below normal pool.

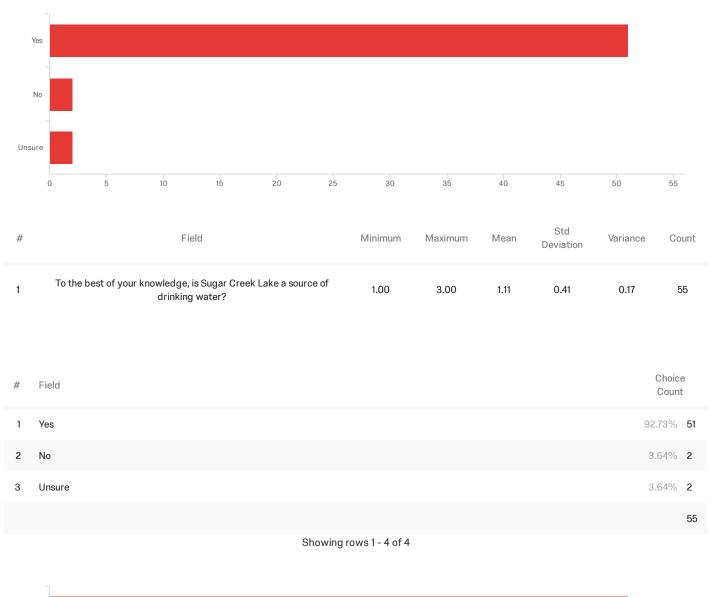
Acknowledgements

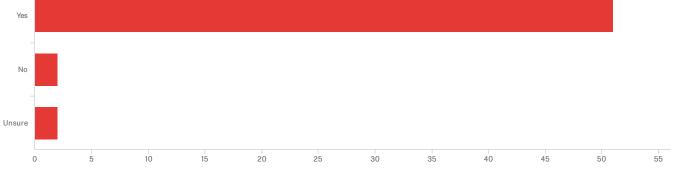
We gratefully acknowledge the indispensable assistance of Russ Errett, Cory Tabbert, and Joan Stemler with the St. Louis District of the U.S Army Corps of Engineers, and the help of the US Geological Survey.

References

- Burns & McDonnell. (1979). *Dam Inspection Report: Sugar Creek Dam*. Kansas City: Burns & McDonnell.
- Edwards, J., Chen, S., & McIntosh, S. (2005). *Missouri Water Supply Studies*. Rolla: Missouri Department of Natural Resources.
- HEC-ResSim. (2019). Retrieved from Hydrologic Engineering Center, U.S. Army Corps of Engineers: https://www.hec.usace.army.mil/software/hec-ressim/
- Howe, W. (1983, November 1). Inspection of Sugar Creek Lake Dam (MO 20005) Randolph County. Rolla: Missouri Department of Natural Resources.
- Midwestern Regional Climate Center. (2019). *Midwest Climate: Climate Summaries Moberly, MO*. Retrieved from Midwestern Regional Climate Center: https://mrcc.illinois.edu/mw_climate/climateSummaries/climSummOut_pcpn.jsp?stnId =USC00235671
- Missouri Department of Natural Resources. (2019). *Census of Missouri Public Water Systems.* Jefferson City: Missouri Department of Natural Resources.
- Richards, J., & Huizinga, R. (2019). *Bathymetric and supporting data for Sugar Creek Lake near Moberly, Missouri, 2018.* Rolla: U.S. Geological Survey. Retrieved from https://doi.org/10.5066/P9XDVRMT

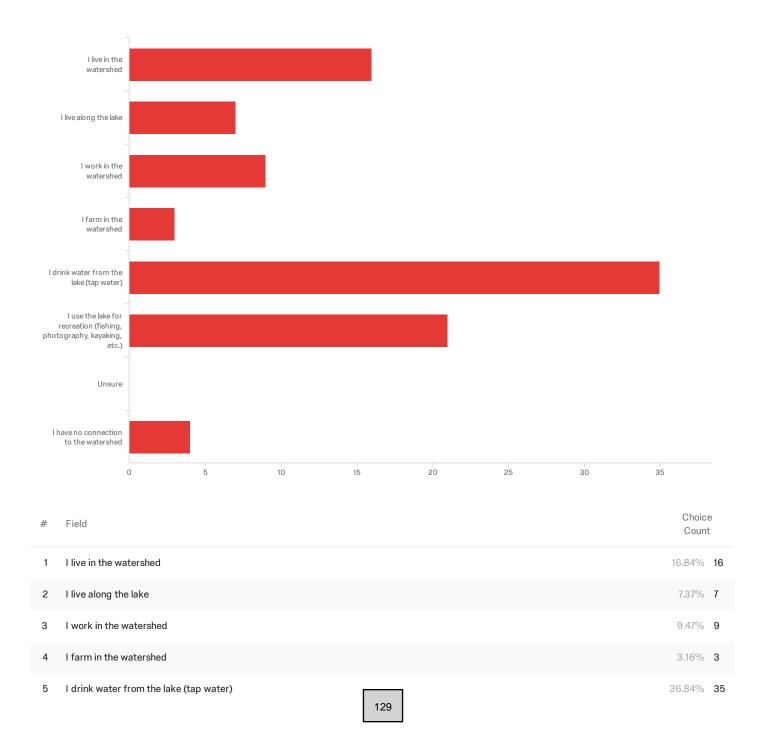
19


Appendix B


2019 Stakeholder Survey Results

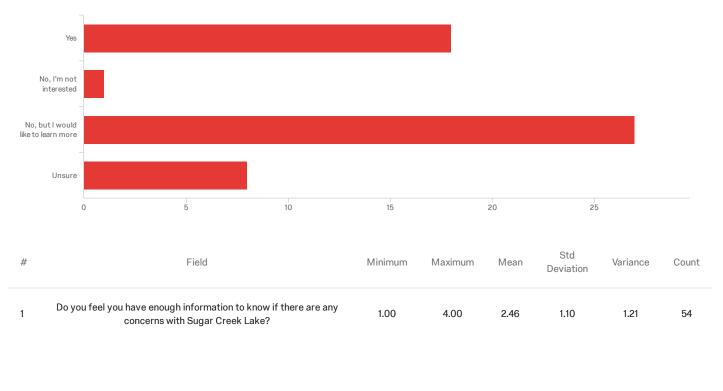
Default Report

Sugar Creek Lake Community Water Plan: Public Input Survey March 21, 2019 11:37 AM CDT


Q1 - To the best of your knowledge, is Sugar Creek Lake a source of drinking water?

Q2 - What is your connection to the Sugar Creek Lake watershed? Check all that apply. See map below. The watershed is an area of land that channels rain and snowmelt into drainage ways, ditches, creeks, and eventually into Sugar Creek Lake. To view a map of the watershed, copy and paste this link into a separate page on your browser:

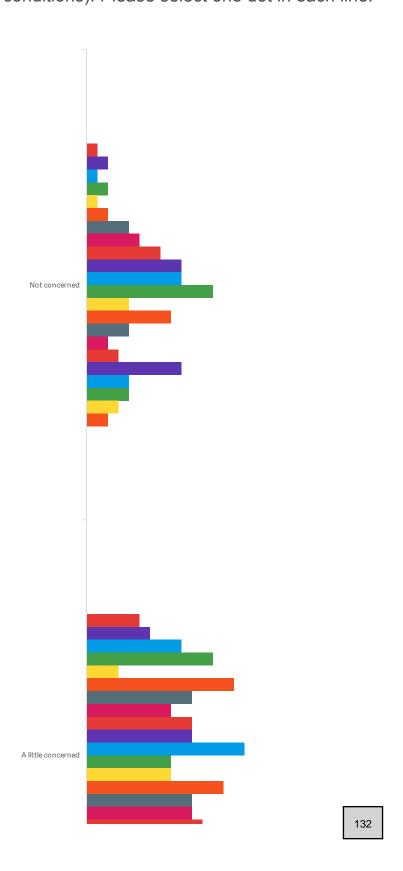
http://extension.missouri.edu/boone/ced.aspx

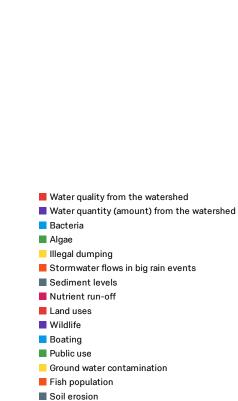


		Choi	WS #6	i.
#	Field	Coun	t	
6	I use the lake for recreation (fishing, photography, kayaking, etc.)	22.11%	21	
7	Unsure	0.00%	0	
8	I have no connection to the watershed	4.21%	4	
			95	

Showing rows 1 - 9 of 9

Q3 - Do you feel you have enough information to know if there are any concerns with

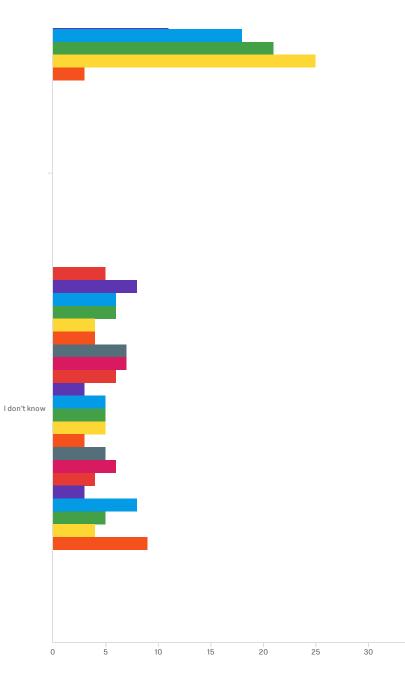

Sugar Creek Lake?



#	Field	Choice Count	
1	Yes	33.33%	18
2	No, I'm not interested	1.85%	1
3	No, but I would like to learn more	50.00%	27
4	Unsure	14.81%	8
			54

Showing rows 1 - 5 of 5

Q4 - From your own perspective, how concerned are you about the following potential issues or items at Sugar Creek Lake? (Note: items listed may not reflect actual current conditions). Please select one dot in each line.


- Septic systems
- Land development
- Local residents
- Cloudiness of water in the lake
- Public awareness about Sugar Creek Lake
- Public education about issues impacting the watershed
- Other (list in box below)

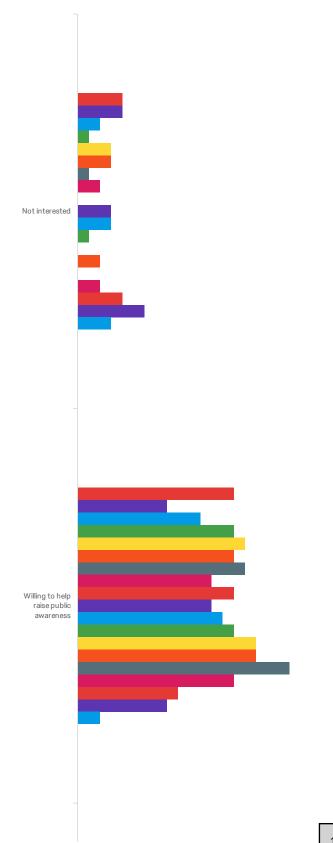
Moderately

concerned

WS #6.

#	Field	Minimum	Maximum	Mean	Std Deviation	Variance	Count
1	Water quality from the watershed	1.00	5.00	3.45	0.86	0.74	53
2	Water quantity (amount) from the watershed	1.00	5.00	3.51	1.00	1.00	53
3	Bacteria	1.00	5.00	3.40	0.96	0.92	53
4	Algae	1.00	5.00	3.23	1.04	1.08	53
5	Illegal dumping	1.00	5.00	3.65	0.78	0.61	52
6	Stormwater flows in big rain events	1.00	5.00	3.15	1.03	1.05	52
7	Sediment levels	1.00	5.00	3.27	1.15	1.31	52

#	Field	Minimum	Maximum	Mean	Std Deviation	Variance	WS #6. Count
8	Nutrient run-off	1.00	5.00	3.30	1.16	1.34	53
9	Land uses	1.00	5.00	3.09	1.22	1.48	53
10	Wildlife	1.00	5.00	2.87	1.17	1.36	53
11	Boating	1.00	5.00	2.74	1.20	1.44	53
12	Public use	1.00	5.00	2.79	1.26	1.60	53
13	Ground water contamination	1.00	5.00	3.35	1.09	1.19	52
14	Fish population	1.00	5.00	2.85	1.16	1.34	53
15	Soil erosion	1.00	5.00	3.21	1.09	1.18	53
16	Septic systems	1.00	5.00	3.49	1.04	1.08	53
17	Land development	1.00	5.00	3.19	1.03	1.06	53
18	Local residents	1.00	5.00	2.79	1.12	1.26	53
19	Cloudiness of water in the lake	1.00	5.00	3.28	1.17	1.37	53
20	Public awareness about Sugar Creek Lake	1.00	5.00	3.28	1.07	1.15	53
21	Public education about issues impacting the watershed	1.00	5.00	3.38	0.99	0.99	53
22	Other (list in box below)	1.00	5.00	4.00	1.41	2.00	16

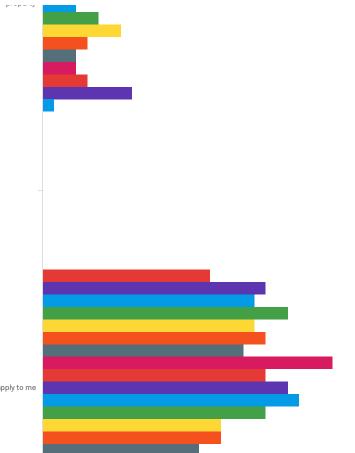

#	Field	Not concerned	A little concerned	Moderately concerned	Really concerned	l don't know	Total
1	Water quality from the watershed	1.89% 1	9.43% 5	39.62% 21	39.62% 21	9.43% 5	53
2	Water quantity (amount) from the watershed	3.77% 2	11.32% 6	30.19% 16	39.62% 21	15.09% 8	53
3	Bacteria	1.89% 1	16.98% 9	32.08% 17	37.74% 20	11.32% 6	53
4	Algae	3.77% 2	22.64% 12	32.08% 17	30.19% 16	11.32% 6	53
5	Illegal dumping	1.92% 1	5.77% 3	25.00% 13	59.62% 31	7.69% 4	52
6	Stormwater flows in big rain events	3.85% 2	26.92% 14	26.92% 14	34.62% 18	7.69% 4	52
7	Sediment levels	7.69% 4	19.23% 10	25.00% 13	34.62% 18	13.46% 7	52
8	Nutrient run-off	9.43% 5	15.	24.53% 13	37.74% 20	13.21% 7	53
			135				

#	Field	Not concerned	A little concerned	Moderately concerned	Really concerned	l don't know	WS #6. Total
9	Land uses	13.21% 7	18.87% 10	24.53% 13	32.08% 17	11.32% 6	53
10	Wildlife	16.98% 9	18.87% 10	30.19% 16	28.30% 15	5.66% 3	53
11	Boating	16.98% 9	28.30% 15	28.30% 15	16.98% 9	9.43% 5	53
12	Public use	22.64% 12	15.09% 8	32.08% 17	20.75% 11	9.43% 5	53
13	Ground water contamination	7.69% 4	15.38% 8	21.15% 11	46.15% 24	9.62% 5	52
14	Fish population	15.09% 8	24.53% 13	26.42% 14	28.30% 15	5.66% 3	53
15	Soil erosion	7.55% 4	18.87% 10	28.30% 15	35.85% 19	9.43% 5	53
16	Septic systems	3.77% 2	18.87% 10	13.21% 7	52.83% 28	11.32% 6	53
17	Land development	5.66% 3	20.75% 11	30.19% 16	35.85% 19	7.55% 4	53
18	Local residents	16.98% 9	18.87% 10	37.74% 20	20.75% 11	5.66% 3	53
19	Cloudiness of water in the lake	7.55% 4	20.75% 11	22.64% 12	33.96% 18	15.09% 8	53
20	Public awareness about Sugar Creek Lake	7.55% 4	15.09% 8	28.30% 15	39.62% 21	9.43% 5	53
21	Public education about issues impacting the watershed	5.66% 3	13.21% 7	26.42% 14	47.17% 25	7.55% 4	53
22	Other (list in box below)	12.50% 2	6.25% 1	6.25% 1	18.75% 3	56.25% 9	16
		01	. 1 00	(00			

Showing rows 1 - 22 of 22

Q5 - The following actions could lead to improvements in the water quality of Sugar

Creek Lake. In what ways are you willing to be involved? Check one per line.


Willing to volunteer with my club, church, or organization

Willing to make cost-free improvements to my property

Willing to pay for improvements to my property

- Increasing my recycling participation
 Installing vegetation filters
 Limiting erosion and sediment runoff
- Improving initial site drainage in the upper watershed
- Adding structures to slow drainage in the middle watershed
- Reducing sedimentation in the lower watershed
- Improving nutrient management (lawn, garden, farm)
- Conducting septic tank maintenance and repairs
- Installing small ponds
- Installing retention basins
- Installing dry dams
- Installing waterways to replace small ditches
- Soil conservation practices
- Reducing water use
- Protecting groundwater springs
- Closing unused above ground and underground storage tanks
- Installing a rain garden
- Installing a rain barrel to water my garden and/or lawn
- Other (list in box below)

Does	not	annly	to	m

#	Field	Minimum	Maximum	Mean	Std Deviation	Variance	Count
1	Increasing my recycling participation	1.00	6.00	3.73	1.73	3.00	52
2	Installing vegetation filters	1.00	6.00	4.12	1.76	3.11	50
3	Limiting erosion and sediment runoff	1.00	6.00	4.18	1.69	2.85	51
4	Improving initial site drainage in the upper watershed	1.00	6.00	4.18	1.79	3.21	49
5	Adding structures to slow drainage in the middle watershed	1.00	6.00	3.94	1.82	3.31	51
6	Reducing sedimentation in the lower watershed	1.00	6.00	4.00	1.83	3.33	51
7	Improving nutrient management (lawn, garden, farm)	1.00	6.00	4.08	1.73	2.99	50
8	Conducting septic tank maintenance and repairs	1.00	6.00	4.53	1.79	3.19	51
		139					

WS #6.

#	Field	Minimum	Maximum	Mean	Std Deviation	Variance	WS #6 Count	
9	Installing small ponds	2.00	6.00	4.30	1.65	2.73	50	
10	Installing retention basins	1.00	6.00	4.22	1.83	3.33	50	
11	Installing dry dams	1.00	6.00	4.24	1.86	3.46	50	
12	Installing waterways to replace small ditches	1.00	6.00	4.27	1.74	3.01	49	
13	Soil conservation practices	2.00	6.00	4.12	1.63	2.65	51	
14	Reducing water use	1.00	6.00	3.94	1.74	3.02	50	
15	Protecting groundwater springs	2.00	6.00	3.78	1.64	2.68	51	
16	Closing unused above ground and underground storage tanks	1.00	6.00	4.29	1.86	3.46	51	
17	Installing a rain garden	1.00	6.00	4.23	1.79	3.20	47	
18	Installing a rain barrel to water my garden and/or lawn	1.00	6.00	4.27	1.86	3.45	51	
19	Other (list in box below)	1.00	6.00	4.80	1.99	3.96	20	

#	Field	Not interested	Willing to help raise public awareness	Willing to volunteer with my club, church, or organization	Willing to make cost-free improvements to my property	Willing to pay for improvements to my property	Does not apply to me	Total
1	Increasing my recycling participation	7.69% 4	26.92% 14	11.54% 6	21.15% 11	3.85% 2	28.85% 15	52
2	Installing vegetation filters	8.00% 4	16.00% 8	14.00% 7	20.00% 10	2.00% 1	40.00% 20	50
3	Limiting erosion and sediment runoff	3.92% 2	21.57% 11	9.80% 5	19.61% 10	7.84% 4	37.25% 19	51
4	Improving initial site drainage in the upper watershed	2.04% 1	28.57% 14	10.20% 5	12.24% 6	2.04% 1	44.90% 22	49
5	Adding structures to slow drainage in the middle watershed	5.88% 3	29.41% 15	7.84% 4	15.69% 8	3.92% 2	37.25% 19	51
6	Reducing sedimentation in the lower watershed	5.88% 3	27.45% 14	9.80% 5	13.73% 7	3.92% 2	39.22% 20	51

#	Field	Not interested	Willing to help raise public awareness	Willing to volunteer with my club, church, or organization	Willing to make cost-free improvements to my property	Willing to pay for improvements to my property	Does not apply to me	Total
7	Improving nutrient management (lawn, garden, farm)	2.00% 1	30.00% 15	8.00% 4	14.00% 7	10.00% 5	36.00% 18	50
8	Conducting septic tank maintenance and repairs	3.92% 2	23.53% 12	1.96% 1	7.84% 4	11.76% 6	50.98% 26	51
9	Installing small ponds	0.00% 0	28.00% 14	2.00% 1	22.00% 11	8.00% 4	40.00% 20	50
10	Installing retention basins	6.00% 3	24.00% 12	6.00% 3	14.00% 7	6.00% 3	44.00% 22	50
11	Installing dry dams	6.00% 3	26.00% 13	4.00% 2	12.00% 6	6.00% 3	46.00% 23	50
12	Installing waterways to replace small ditches	2.04% 1	28.57% 14	2.04% 1	16.33% 8	10.20% 5	40.82% 20	49
13	Soil conservation practices	0.00% 0	31.37% 16	1.96% 1	21.57% 11	13.73% 7	31.37% 16	51
14	Reducing water use	4.00% 2	32.00% 16	2.00% 1	22.00% 11	8.00% 4	32.00% 16	50
15	Protecting groundwater springs	0.00% 0	37.25% 19	7.84% 4	21.57% 11	5.88% 3	27.45% 14	51
16	Closing unused above ground and underground storage tanks	3.92% 2	27.45% 14	7.84% 4	5.88% 3	5.88% 3	49.02% 25	51
17	Installing a rain garden	8.51% 4	19.15% 9	2.13% 1	21.28% 10	8.51% 4	40.43% 19	47
18	Installing a rain barrel to water my garden and/or lawn	11.76% 6	15.69% 8	3.92% 2	11.76% 6	15.69% 8	41.18% 21	51
19	Other (list in box below)	15.00% 3	10.00% 2	0.00% 0	0.00% 0	5.00% 1	70.00% 14	20

Showing rows 1 - 19 of 19

Appendix C

USGS 2018 Bathymetric Map for Sugar Creek Lake

≪USGS

U.S. Department of the Interior U.S. Geological Survey Introduction

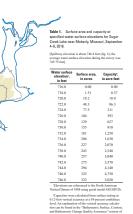
ly lakes need an accumte estimate of the lake capacity to ensure for uses such as providing consistent recreation pool levels, in birbari, flood subternet, water supply, and power generation, mportant for managers of water-supply lakes during periods of an growth, or exceptionally lake water use in the area supplied minimity from runoff mto the lake, will cause a loss of storage with, the capacity links for the lake (for one exists) will oversecapacity table for the lake (if one exists) will overes-netric changes can be demonstrated through periodic nulation can be calculated so that managers can better

Methods

HUS flymetric survey was done from September 4 to 6, 2018, at Sugar Creek Lake alia methods to the previous survey completed in 2005 (Wilson and Richards, 2006; 2013). The average water-surface elevation of the lake during the 2018 survey was and was 74.68.8 fluxing the 2003 survey. Abalymetric starker, a hubymetric con-and a bubymetric change map were created from the survey data. etric Data Collection

metric Data Collection and the second second second second second second second second simulation mapping system (MIMS). The various components of the MIMS of the study are described in more detail in report about studies on the Missouri and stoppe Rivers in Missouri (for cample, see Hairings, 2010, 2017, Hairings and other second secon

ration of several individual components: the multibeam echo-l navigation system (INS), and a data-collection and data-pro (Amplanic Ocean/Matter) provides position in thread-dimension tion and data-pro-NS (Applaini OccamMaster) provides position in three-dimensional honce, pitch, roll, and handing of the vessel (and, thereby, the sistion the data received by the MBES. The MBES that was used is similar in a systems used in other previous studies in Missoari. The WBMS is similar that used in other previous studies in Missoari. The WBMS is primum data usually are collected in a south of less than 160 degree of nadir, or straight down below the MBES; nevertheeles, the swa


tion of Sugar Creek Lake near Moberly, Missour

R

<text><text><text><text><text>

netric Surface and Contour Map Creation

<text><text><text><text><text><text>

EXPLANATION Area of resurvey for point to point quality-assurance data collection

reference mark—Shows identifier and elevation. Datum is North American Vertical Datum of 1988 using the geoid model GEOID12b

is change map (fig. 3) was generative non-summarian time survey data points between the varves outscitcher. The data points between the consolident of a 301 reason wavey data point was within a map of the survey data point. The survey data point was written a map of the survey points collected in 2018. A between the survey points collected in 2018. A between the survey point collected in 2018. A between the survey data is a survey data and a survey point collected in 2018. A between the survey of a bat was even even the survey collected in 2018. Both Survey (so that the survey of the

Prepared in cooperation with the Missouri Department of Natural Resources and the City of Moberly, Missouri

Beam-Angle Check

ge Map Creation

Bathymetric Data Collection Quality Assurance

The bathymetric change map (fig. 3) was 2018 bathymetric survey data points whe

Patch Tests

Patch Tests Tash tests are series of dynamic earlieration tests that are used to check for solution variations in the aritration and timing of the MIIIS with respect to the DNs and real-world coloniants. The patch tests are used to detrating timing offsts cancel by the starsy between the MIIS and the DNs, and angular offsets to soll, tacks, and you caused by the alignment of the transducer the distinging, 30,771. These collects have been downleved to be essentially a fauring or submerged object (see Flairing), 20,771. The offsets determined as the patch test are applied when processing the data collected draing a surver, Patch tests were completed on Segmetro S., at Sugger Creek Lake, and angular offsets were explained in the data collection at we this lineary tests reals for takin star and indime explorate configurations used in other at we this lineary tests of the other stars.

Uncertainty Estimation

Uncertainty castroneous Similar to the previous studies of bathymetry in Missoni (Huizinga, 2010, 2017), uncer-tainty in the survey was estimated by comparing the total propagated uncertainty (FIP) for each 14.6H survey; and each of the studies of the studies of the studies of the meric Estimator (CURE) method (Caller and Mayer, 2003). The CURE method allows all programs uncertainties and reachation effects to the conducted and propaga-tion of the studies of the st ent uncertainties and resolution effects to be combined and propagate sing steps, which provides a robust estimate of the spatial distribu-inty within the survey area (Czuba and others, 2011). Thus, the TPU of the accuracy to be expected for such a point when all relevant error $_{\rm max}$ spectra of the the and before a spectra of the the and the locar and the spectra of the the locar and the locar and the spectra of the locar and loc

Bathymetric Surface, Contour, and Bathymetric Change Quality Assurance

<text><text><text><text><text>

BM4 759.15

0.5 ML

Figure 3. Bathy

Bathymetry, Capacity, and Bathymetric Change

A bathymetric surface was created from the current (2018) surveyed data duce a bathymetric contour map (fig. 2). The 2018 bathymetric map is simi duced from the 2003 survey (Wilson and Richards, 2006; appendix of Rich ic map is similar to the m endix of Richards, 2013) some areas (fig. 2), but a is evidence of the river A surface area a TIN. At the spillway capacity is 5,020 acr nernared for the ners rsacity prepared 2013); how transect waveys, more than a solution of the solution o surveys. The bathyn

References Cited

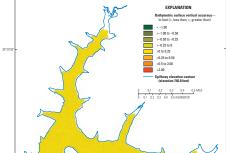
Applanix Corporation, 2009, POS-Pac[™] MMS[™] GNSS-inertial tools user guide, rev. 4: Richmond Hill, Ontario, Canada, PUBS–MAN–001768, 523 p. Calder, B.R., and Mayer, L.A., 2003, Automatic processing of high-rate, high-density mul-tibeam echosounder data: Geochemistry, Geophysics, Geosystems (G²), v. 4, no. 6, 22 p. [Also available at https://doi.org/10.1029/2002GC000486.]

(rote stimutes an imperiation of the large strength of the larg

Iuizinga, R.J., 2010. Bathymetric surveys at highway bridges crossing the Missoari River in Kansac Gity, Missoari, using a multibeam echo sounder, 2010; U.S. Geological Survey Scientific Investigations Report 2010; 2027, 61 p. [Also available at https://pubs.usgs.gov/sir2010/52007.] Huizinga, R.J., 2014, Bathymetric surveys and area/capacity tables of water-supply reservoir for the city of Cameron, Missouri, July 2013: U.S. Geological Survey Open-File Report 2014–1005, 15 p. [Also available at https://doi.org/10.3133/off/20141005.]

uizinga, R.J., 2017, Bathymetric and velocimetric surveys at highway bridges cross Missouri and Mississippi Rivers near St. Louis, Missouri, May 23–27, 2016: U.S. cal Survey Scientific Investigations Report 2017-5076, 102 p. [Also available at https://doi.org/10.3133/sir20175076.]

angle-manager 10.5158/arXiv:10.0012 [https://doi.org/10.518/arXiv:10.0012] and assessment of habitat for pallel stargeon on the MissistipP Rver in the vicinity of the proposed Interastics Of Orifseg at SL Cost, Missorie U.S. Geological Survey Scientific Investigations Report 2010;5:071,28 p. [Also vanilable at https://pib.arxg.gov/arXiv10105071.


HYPACK, Inc., 2015, HYPACK® hydrographic survey software user manual: Middletown Conn., HYPACK, Inc., 2,041 p. International Hydrographic Organization, 2008, IHO standards for hydrographic surveys (Sth ed.): Monaco, International Hydrographic Bureau, Special publication no. 44, 27 p.

Richards, J.M., 2013, Bathymetric surveys of selected lakes in Missouri—2000-2008: U.S. Geological Survey Open-File Report 2013–1101, 9 p. with appendix [Also available at https://pubs.usgs.gov/of/2013/1101.]

Richards, J.M., and Huizinga, R.J., 2019, Bathymetric and supporting data for Sugar Creek Lake near Moberly, Missouri, 2018: U.S. Geological Survey data release, https://doi.org/10.5066/P9XDVRMT. Rydlund, P.H., Jr., and Densmore, B.K., 2012, Methods of practice and guidelines for using survey-grade global navigation satellite systems (GNSS) to establish vertical datum in

143 EXPLANATION Bathymetric surface vertical accuracy-In feet (<, less than; >, greater than)

Scientific Investigations Map 3431

By Joseph M. Richards, Richard J. Huizinga, and Jarrett T. Ellis 2019

Appendix D

USLE and SPI Equations

$$A = R \times K \times LS \times C$$
 Equation 1

where:

A = annual soil loss (tons/acres)

R = rainfall erosivity factor (unitless)

K = soil erodability factor (unitless)

LS = length and steepness of slope factor (unitless)

C = vegetation or crop factor (unitless)

$$SPI = ln(DA \times tan G)$$
 Equation 2

where:

SPI = stream power index (unitless)

 Q_o = upstream drainage area (flow accumulation at grid cell multiplied by grid cell area (unitless)

G = slope at the grid cell (radians)

Appendix E

MDNR Nutrient Criteria Implementation Plan

Nutrient Criteria Implementation Plan

July 27, 2018

Table of Contents

Purpose of Document
Background
Missouri's Nutrient Criteria
Missouri Lakes and Reservoirs
Part I. Monitoring and Assessment
Monitoring Efforts
Lakes of Missouri Volunteer Program (LMVP)
Data Requirements for Assessment
Criteria for Assessment
Assessment Methodology10
Trend Analysis
Total Maximum Daily Load Development for Nutrient Impaired Waters24
Part II. Permit Implementation
Effluent Regulation [10 CSR 20-7.015(3)]
Implementing a Three-Phase Approach26
Phase 1 – Data Collection and Analysis27Phase 2 – Plant Optimization28Phase 3 – Final Effluent Limitations29
Impaired Lakes
New and Expanding Sources and Antidegradation Review Requirements
Potential Flexibilities for Permittees
Incentives for Early Nutrient Reduction
References
Appendices
A – Missouri Department of Conservation Fish Stocking Information Letter
B – Methodology for the Development of the 2020 Section 303(d) List in Missouri 39

Purpose

Section 304(a) of the federal Clean Water Act provides the framework for states to develop Water Quality Standards (WQS) that protect the physical, chemical, and biological integrity of their waters. The Missouri Department of Natural Resources (Department) is fully delegated by the US Environmental Protection Agency (EPA) to conduct WQS revisions pursuant to the federal Clean Water Act. Changes to Missouri's WQS [10 Code of State Regulations (CSR) 20-7.031] were published on March 31, 2018. One major revision to the WQS is the incorporation of numeric nutrient criteria for lakes.

This plan describes how the Department intends to implement nutrient criteria in accordance with the newly revised WQS. This plan does not prohibit establishing alternative methods of analysis, permit limits, or requirements provided that the alternatives are technically sound, consistent with state and federal regulations, and are protective of water quality. All permitting will be consistent with federal and state requirements.

Background

Eutrophication is the process by which a body of water becomes enriched in nutrients, such as nitrogen and phosphorus, which stimulate the excessive growth of algae and other plants. Eutrophication may be accelerated by human activities. It is well documented that enrichment of nutrients can lead to increased production of algae and aquatic plants in freshwater systems. This increased production may result in nonattainment of beneficial uses under certain environmental conditions. Aquatic life protection uses can be negatively impacted by excess nutrient loading, which may increase the likelihood of fish kills caused by the depletion of dissolved oxygen. Aquatic diversity can be undermined by creating conditions favorable to fast-growing species, such as carp and other benthivores, at the expense of other species (Edgertson and Downing, 2004).

The Department utilizes regulatory and incentive-based approaches to ensure excessive nutrients do not impair or degrade beneficial uses. Regulatory approaches such as nutrient effluent limitations and nutrient WQS are implemented by the Department's Water Protection Program. Incentive-based approaches to nutrient reduction through education, outreach, and the execution of best management practices are implemented by the Department's Soil and Water Conservation Program using federal and state funds.

Missouri Lakes and Reservoirs

For the purposes of Missouri's nutrient criteria and this document, all lakes and reservoirs are referred to as "lakes." [10 CSR 20-7.031(5)(N)1.A.]. Missouri's lakes are more appropriately classified as impoundments and have very different physical, chemical, and biological characteristics when compared to naturally-formed glacial or mountainous lakes found in other states. Many of Missouri's major lakes were constructed primarily for flood control, hydroelectric power, and water supply. The riverine habitats and species that existed before impoundment over time transitioned into the current state of aquatic life dominated by self-sustaining populations of sport and non-sport fishes. The numeric nutrient criteria and implementation methods proposed by the Department are structured to ensure the deleterious impacts of nutrient enrichment to Missouri's lakes are mitigated without adverse impacts to the health and vitality of the self-sustaining populations of aquatic life that live there.

Missouri's nutrient criteria apply to all lakes that are waters of the state and have an area of at least ten (10) acres during normal pool condition, except the natural lakes (oxbows) in the Big River Floodplain ecoregion [10 CSR 20-7.031(5)(N)2.]. The criteria apply to, and assessments will be conducted for, the entire water body as found in Missouri's WQS regulation. As noted in the *Rationale for Missouri Lake Nutrient Criteria* (DNR, 2017), the Department has structured Missouri's nutrient criteria as a decision framework that applies at an ecoregional basis. This decision framework integrates causal and response parameters into one water quality standard that accounts for uncertainty in linkages between causal and response parameters. The decision framework includes response impairment thresholds, nutrient screening thresholds, and response assessment endpoints. This framework appropriately integrates causal and response parameters and is based on the bioconfirmation guiding principles that EPA (2013) has suggested as an approach for developing nutrient criteria.

Numeric Criteria for Lakes [10 CSR 20-7.031(5)(N)]

Missouri's WQS contain numeric response impairment threshold values for chlorophyll-a (Chla) and screening threshold values for total nitrogen (TN), total phosphorus (TP), and Chl-a, all of which vary by the dominant watershed ecoregion. Lakes are determined to be impaired if the geometric mean of samples taken between May and September in a calendar year exceeds the Chl-a response impairment threshold value more than once in three years' time. A duration of three or more years is necessary to account for natural variations in nutrient levels due to climatic variability (Jones and Knowlton, 2005). If a lake exceeds a screening threshold value, it will be designated as impaired if any of five response assessment endpoints are also identified in the same calendar year.

	Chl-a Response	Nutrient Sc	reening Thresh	olds (µg/L)
Lake Ecoregion	Impairment Thresholds (µg/L)	TP	TN	Chl-a
Plains	30	49	843	18
Ozark Boarder	22	40	733	13
Ozark Highland	15	16	401	6

The five response assessment endpoints are:

- Occurrence of eutrophication-related mortality or morbidity events for fish and other aquatic organisms
- Epilimnetic excursions from dissolved oxygen or pH criteria
- Cyanobacteria counts in excess of 100,000 cells/mL
- Observed shifts in aquatic diversity attributed to eutrophication
- Excessive levels of mineral turbidity that consistently limit algal productivity during the period of May 1 September 30

All scientific references used for numeric nutrient criteria derivation are contained in the *Rationale for Missouri Lake Nutrient Criteria* (DNR, 2017) and supplemental materials maintained by the Department. The Department will maintain a copy of these references and make them available to the public for inspection and copying at no more than the actual cost of reproduction.

Narrative Criteria [10 CSR 20-7.031(4)]

Missouri's WQS contain general (narrative) water quality criteria that are used to protect waters from nutrient enrichment caused by excessive nitrogen and/or phosphorous loading. Missouri's general criteria protect waters from "unsightly or harmful bottom deposits" and "unsightly color or turbidity," which is a potential consequence of excess nutrients in freshwater systems. Narrative criteria do not provide numeric thresholds or concentrations above which impacts to designated uses are likely to occur. However, because the bioconfirmation approach integrates causal and response variables to ensure attainment of the aquatic habitat protection use, the proposed numeric nutrient criteria and screening thresholds serve as an enforceable interpretation of Missouri's general criteria at 10 CSR 20-7.031(4). Additionally, implementation of the numeric nutrient criteria and screening thresholds also will ensure protection of downstream waters as required by 10 CSR 20-7.031(4)(E) and 40 CFR 131.10(b).

Site-Specific Numeric Criteria [10 CSR 20-7.031(5)(N)]

Missouri's WQS also contain numeric nutrient criteria for specific lakes. Each of the lakes listed in Table N of the WQS have site-specific criteria for TN, TP, and Chl-a, based on the annual geometric mean of a minimum of three years of data and characteristics of the lake. Additional site-specific criteria may be developed to account for the unique characteristics of a water body.

Part I. Monitoring and Assessment

Monitoring Efforts

The Department currently has data on approximately 12% of Missouri lakes, representing 83% of lake acres. Based on past resources and progress, the Department expects to have data on most lakes that are subject to the WQS within ten years. The Department will prioritize data collection on lakes without sufficient data by identifying relevant bodies of water that, because of location or activity, are most likely to have an impairment or are most vulnerable to the impacts of nutrients. Missouri has identified this gap (GAP 5.2) in our Monitoring Strategy Document found at https://dnr.mo.gov/env/wpp/waterquality/303d/docs/2015-monitoring-strategy-final.pdf. The Department coordinates with EPA to update the Monitoring Strategy Document every five years.

The Department has a cooperative agreement with the University of Missouri (MU) to collect data on lakes statewide. This cooperative agreement utilizes Section 319 funds, as well as match funds from MU, to collect data sufficient to characterize and assess lake water quality in accordance with Sections 303(d) and 305(b) of the federal Clean Water Act. MU operates two programs that are funded through the cooperative agreement: 1) the Statewide Lake Assessment Program, and 2) the Lakes of Missouri Volunteer Program. MU has been collecting and analyzing data on lakes throughout the state since 1989.

As part of the cooperative agreement, these programs submit, and the Department approves, Quality Assurance Project Plans (QAPPs) that detail the following:

- Parameters data to be collected
- Sampling Methods how the data are collected
- Personnel who collects the data
- Analytical Methods how the data are analyzed
- Laboratory who analyzes the data
- Quality Assurance Review who quality assures the data
- Reporting to whom the data are reported

Lakes of Missouri Volunteer Program (LMVP)

The LMVP works to identify volunteers to assist MU in collecting information on lakes across Missouri. Volunteers are trained by MU staff and follow the approved protocols in the QAPP. The samples collected are analyzed by the MU laboratory. Volunteer data are checked through MU audits to ensure their data are of the same quality as data collected by MU staff. These data typically are collected 4-8 times per year from April through September.

153

7

- The samples collected by LMVP volunteers are analyzed for:
- Total Nitrogen
- **Total Phosphorus** •
- Total Chlorophyll
- Chlorophyll-a
- Pheophytin-a

• Cylindrospermopsin

Microcystin

• Total Suspended Solids

Inorganic Suspended Solids

Organic Suspended Solids

*Water temperature and Secchi depth also are recorded with each sample.

•

Statewide Lake Assessment Program (SLAP)

The SLAP is composed of MU staff who collect water samples, as well as depth profiles, on lakes across the state.

The samples collected by SLAP staff are analyzed for:

- **Total Nitrogen**
- **Total Phosphorus**
- Total Chlorophyll •
- Chlorophyll-a •
- Pheophytin-a
 - Inorganic Suspended Solids

*Algal toxins started in summer of 2018.

The depth profiles consist of a composite sample of the epilimnion and include continuous sonde measurements for:

• Depth

•

- Temperature •
- Dissolved Oxygen % Saturation
- Dissolved Oxygen Concentration • •
- Conductivity

Nutrient Criteria Implementation Plan

Missouri Department of Natural Resources, Water Protection

Chlorophyll Oxidizing/Reducing Potential •

In addition to these parameters, in 2018 MU will begin collecting light-availability data through the use of a Li-Cor quantum sensor. Data collected with this equipment consist of light attenuation and photosynthetically active radiation (PAR).

The SLAP collects long-term data on 38 lakes throughout the state to assess water quality and to conduct long-term trend analysis. The SLAP also collects data on approximately 40 lakes which can be rotated every 3-4 years. Starting in 2019, the Department will work with the SLAP to expand monitoring or add priority lakes for additional data collection needs. See Assessment Methodology Section for identification of priorities during assessment.

- **Organic Suspended Solids**
- **Total Suspended Solids**
- Microcystin*
 - Cylindrospermopsin*
- Saxitoxin*

- Anatoxin-a*
- - pН
 - Turbidity Phycocyanins •

Data Requirements for Assessment

In order to assess a lake against the lake numeric nutrient criteria in 10 CSR 20-7.031(5)(N), the following data requirements must be met:

- 1. At least four samples collected between May 1 and September 30 under representative conditions;
- 2. Each sample must have been analyzed for at least Chl-a, TN, TP, and Secchi depth;
- 3. At least three years of samples (years do not have to be consecutive). Data older than seven years will not be considered, consistent with the Department's Listing Methodology (see Appendix B);
- 4. Data collected under a Quality Assurance Project Plan (QAPP).

If these requirements are not met, the lake will be placed into Category 3 of Missouri's Integrated Water Quality Report (i.e., Missouri's 305(b) Report) until further information can be collected. In the case of lakes that have some data, but not enough to make an assessment, these lakes will be prioritized for additional sampling. Lakes with limited data where water quality trends or field observations point to possible impairment will receive the highest priority.

Criteria for Assessment

Each lake will be evaluated against the appropriate ecoregional or site-specific criteria located in Tables L, M, and N of 10 CSR 20-7.031 (reproduced below).

Lake Ecoregion	Chl-a Response Impairment Thresholds
Plains	30
Ozark Border	22
Ozark Highland	15

Table L: Lake Ecoregion Chl-a Response Impairment Threshold Values (µg/L)

Table M:	Lake E	coregion	Nutrient	Screening	Threshold	Values	(ug/L)
				~~~~~ <u>_</u>			

Lake Februarion	Nutrient Screening Thresholds				
Lake Ecoregion	TP	TN	Chl-a		
Plains	49	843	18		
Ozark Border	40	733	13		
Ozark Highland	16	401	6		

154

Lake	Lake	County	Site-Specific Criteria (µg/L)		
Ecoregion	Lake	County	TP	TN	Chl-a
	Bowling Green Lake	Pike	21	502	6.5
	Bowling Green Lake (old)	Pike	31	506	5
	Forest Lake	Adair	21	412	4.3
	Fox Valley Lake	Clark	17	581	6.3
	Hazel Creek Lake	Adair	27	616	6.9
Plains	Lincoln Lake – Cuivre River State Park	Lincoln	16	413	4.3
	Marie, Lake	Mercer	14	444	3.6
	Nehai Tonkaia Lake	Chariton	15	418	2.7
	Viking, Lake	Daviess	25	509	7.8
	Waukomis Lake	Platte	25	553	11
	Weatherby Lake	Platte	16	363	5.1
Ozark	Goose Creek Lake	St Francois	12	383	3.2
Border	Wauwanoka, Lake	Jefferson	12	384	6.1
	Clearwater Lake	Wayne-Reynolds	13	220	2.6
	Council Bluff Lake	Iron	7	229	2.1
	Crane Lake	Iron	9	240	2.6
	Fourche Lake	Ripley	9	236	2.1
	Loggers Lake	Shannon	9	200	2.6
Ozark	Lower Taum Sauk Lake	Reynolds	9	203	2.6
Highland	Noblett Lake	Douglas	9	211	2
	St. Joe State Park Lakes	St Francois	9	253	2
	Sunnen Lake	Washington	9	274	2.6
	Table Rock Lake	Stone	9	253	2.6
	Terre du Lac Lakes	St Francois	9	284	1.7
	Timberline Lakes	St Francois	8	276	1.5

## Table N: Site-Specific Nutrient Criteria

## Assessment Methodology

The Department requests and actively seeks out readily available data on all waters within the state. These data are reviewed for proper quality assurance and quality control measures, and then the data are compiled by the Department into Missouri's Water Quality Assessment database.

Every two years, the Department assesses the designated uses of all waters protected under 10 CSR 20-7.031. Once assessments have been completed, the Department creates spreadsheets of data for all impaired (303(d) List) and delisted waters. The Department then places the spreadsheets, as well as the list of impaired waters, on the Department's website for a 90-day public notice period. After the public notice period ends, the Department responds to any public comments and makes any applicable changes to the spreadsheets or the list of impaired waters. The Department then asks the Missouri Clean Water Commission for approval of the impaired waters list. After the Commission's approval, the Department submits all of the information used in the assessment decision process to the EPA for approval.

#### 1. Site-Specific Lake Nutrient Criteria

Lakes with site-specific numeric nutrient criteria (see Table N of 10 CSR 20-7.031) will be assessed using the current listing methodology. Missouri has a state regulation 10 CSR 20-7.050 which requires a methodology be created and followed for the development of an impaired waters list. Missouri develops and provides public notice of the methodology every two years concurrently with the 303(d) list. The methodology is approved by the Missouri Clean Water Commission before the Department can use it for assessments. The Department currently assesses against the existing site specific lake nutrient criteria in the water quality standards (now Table N of 10 CSR 20-7.031). See the Department's 2020 Listing Methodology in Appendix B for details. Table 1 below shows the current list of impaired lakes assessed according to the site specific criteria.

		Impaired Lakes with Site S	peeme en	ici iu		
Year	WBID	Waterbody	WB Size	Units	IU	Pollutant
2014	7003	Bowling Green Lake - Old	7	Acres	AQL	Chl-a
2012	7003	Bowling Green Lake - Old	7	Acres	AQL	TN
2012	7003	Bowling Green Lake - Old	7	Acres	AQL	TP
2014	7326	Clearwater Lake	1635	Acres	AQL	Chl-a
2016	7326	Clearwater Lake	1635	Acres	AQL	TP
2016	7334	Crane Lake	109	Acres	AQL	Chl-a
2016	7334	Crane Lake	109	Acres	AQL	TP
2010	7151	Forest Lake	580	Acres	AQL	Chl-a
2010	7151	Forest Lake	580	Acres	AQL	TN
2010	7151	Forest Lake	580	Acres	AQL	TP
2018	7324	Fourche Lake	49	Acres	AQL	Chl-a
2018	7324	Fourche Lake	49	Acres	AQL	TN
2014	7008	Fox Valley Lake	89	Acres	AQL	Chl-a
2014	7008	Fox Valley Lake	89	Acres	AQL	TN
2010	7008	Fox Valley Lake	89	Acres	AQL	TP
2010	7152	Hazel Creek Lake	453	Acres	AQL	Chl-a
2018	7152	Hazel Creek Lake	453	Acres	AQL	TN
2018	7049	Lake Lincoln	88	Acres	AQL	Chl-a
2018	7301	Monsanto Lake	18	Acres	AQL	Chl-a
2016	7301	Monsanto Lake	18	Acres	AQL	TN
2018	7301	Monsanto Lake	18	Acres	AQL	TP
2014	7316	Noblett Lake	26	Acres	AQL	Chl-a
2014	7316	Noblett Lake	26	Acres	AQL	TP
2002	7313	Table Rock Lake	41747	Acres	AQL	Chl-a
2002	7313	Table Rock Lake	41747	Acres	AQL	TN
2012	7071	Weatherby Lake	185	Acres	AQL	Chl-a
2010	7071	Weatherby Lake	185	Acres	AQL	TN
2014	7071	Weatherby Lake	185	Acres	AQL	TP

 Table 1. List of Impaired Lakes with Site Specific Criteria

## 2. Ecoregional Lake Nutrient Criteria

Lakes with ecoregional nutrient criteria (see Tables L and M of 10 CSR 20-7.031) will be assessed using the following methodology:

- a. For lakes with ecoregional criteria, a yearly geometric mean for Chl-a, TN, and TP will be calculated for the period of record. The latest three years (years do not have to be consecutive) of data will be used for assessment. These data are collected by the SLAP and the LMVP under a cooperative agreement with the Missouri Department of Natural Resources.
- b. If the geometric mean of Chl-a exceeds the response impairment threshold in more than one of the latest three years of available data, the lake will be placed into Category 5 of Missouri's IR and go on the 303(d) List for Chl-a. If only two years of data are available and the geometric mean of Chl-a exceeds the response impairment threshold in both

years, the lake will be placed into Category 5 of Missouri's IR and go on the 303(d) List for Chl-a.

- c. If the geometric mean of Chl-a, TN, or TP exceeds the nutrient screening threshold, then additional response assessment endpoints will be evaluated (see Assessment Methodology Section #3 "Additional Lake Response Assessment Endpoints" below). If data for any of the response assessment endpoints indicates impairment in the same year that Chl-a, TN, or TP exceeds the nutrient screening threshold, the lake will be placed into Category 5 of Missouri's IR. If sufficient data are not available to assess the response assessment endpoints or they do not show impairment, then the water will be placed into Category 3B or 2B, respectively (assuming other uses are attaining) and prioritized for additional monitoring and ongoing evaluation of response assessment endpoints (see Monitoring Efforts Section). If a lake that is sampled in the LMVP is placed in Category 3b or 2B, then it may be moved to the SLAP to ensure all nutrient screening threshold data needed to complete a full assessment are available. The Department is committed to providing the data needed to complete the full assessment.
- d. If the geometric mean of Chl-a, TN, or TP does not exceed the nutrient screening threshold, the water will be placed into the appropriate IR category based on the attainment of the other uses.
- e. The period of record for the lake will be reviewed for the purpose of determining longterm trends in water quality. If a lake is determined to be trending towards potential impairment, the lake will be further scrutinized and prioritized for additional monitoring (see Monitoring Efforts and Trend Analysis Sections).
- f. The Department's Listing Methodology Document will be updated to reflect the methodology outlined in this implementation plan as soon as possible after approval of the ecoregional lake nutrient criteria.

## 3. Additional Lake Response Assessment Endpoints

For lakes where the geometric mean of Chl-a, TN, or TP exceeds the ecoregional nutrient screening thresholds, the additional response assessment endpoints listed below will be evaluated. Each of these endpoints is linked to the protection of the aquatic habitat designated use and will be used to assess compliance with the numeric nutrient criteria when screening values are exceeded. When one of these endpoints indicate a eutrophication impact in the same year as a nutrient screening threshold exceedance, the lake will be placed into category 5 and on the 303(d) list.

Response assessment endpoints observed in lakes without sufficient data for Chl-a, TP, or TN will be prioritized highest for additional sampling of Chl-a, TP, and TN.

a. 10 CSR 20-7.031(5)(N)6.A. – Occurrence of eutrophication-related mortality or morbidity events for fish and other aquatic organisms (i.e., fish kills)

158

- Following the Department's Listing Methodology Document (see Appendix B), two or more fish kills within the last three years of available data will result in the water being placed into category 5 as well as the 303(d) list.
- Fish kills as a result of nutrient enrichment (eutrophication) in a lake indicate that current water quality may not be protective of the aquatic habitat designated use. The Missouri Department of Natural Resources maintains contact with the Missouri Department of Conservation (MDC) on fish kills that occur throughout the state. The MDC, as well as the Department's Environmental Emergency Response and Water Protection Program, receive notifications of observed fish kills. The MDC investigates all reported fish kills and provides a summary report of the species, size, and number of fish and other aquatic organisms killed. These reports are provided shortly after the investigation. Annual fish kill reports are compiled and provided to the Department.

One such example of a fish kill annual report is MDC's Missouri Pollution and Fish Kill Investigations 2017 (published April 2018). The Missouri Department of Natural Resources will continue to request these data and annual reports from MDC. This document includes fish kill data and causes as well as describes the methods used by MDC to assess fish kills.

- The Department will review reports for information pertaining to the cause of death as well as the potential sources. Fish populations can have seemingly random small die offs related to disease, virus, or other natural causes. The Department will focus on die-offs related to dissolved oxygen, temperature, pH, algal blooms, and the toxins associated with algal blooms. More than one fish kill within ten years or one large (>100 fish and covering more than ten percent of the lake area) fish kill documented to be caused by dissolved oxygen excursions, pH, algal blooms, or the toxins associated with algal blooms will constitute evidence of impairment.
- b. 10 CSR 20-7.031(5)(N)6.B. Epilimnetic excursions from dissolved oxygen or pH criteria

In lakes, DO is produced by atmospheric reaeration and the photosynthetic activity of aquatic plants and consumed through respiration. DO production by aquatic plants (primarily phytoplankton in Missouri reservoirs) is limited to the euphotic zone where sufficient light exists to support photosynthesis. In some lakes, reaeration and photosynthesis may be sufficient to support high DO levels throughout the water column during periods of complete mixing. However, Missouri lakes do not stay completely mixed and thermally stratify during the summer (Figure 1). The duration, depth, and areal extent of stratification in any lake is a function of site-specific lake variables and environmental factors. During the stratified period, the epilimnion (surface water layer) receives oxygen from the atmosphere and is dominated by primary production from phytoplankton and other aquatic plants. In contrast, the hypolimnion (deep, cool water zone) is largely separated from the epilimnion (surface layer) and is dominated by respiratory processes that use organic matter derived from autochothonous (in-lake) and allochthonous (watershed) sources. The strong temperature gradient between the

epilimnion and hypolimnion generally restrict gas and nutrient circulation and limits the movement of phytoplankton between the layers. As a result, respiration in the hypolimnion creates hypoxic conditions during the stratification period.

Data collected by the MU demonstrates that hypoxic hypolimnetic conditions (absent of DO) consistently occur during the summer in Missouri lakes regardless of trophic condition. Further, anoxic hypolimnetic conditions have even been measured in Missouri's high quality oligotrophic lakes. It is apparent from the science and available data that low hypolimnetic DO conditions are the result of natural processes and should be expected in all lakes across the state. Thermal stratification and resulting anoxic hypolimnia limits the area where some more sensitive fish species thrive to the epilimnion. Assessment of dissolved oxygen in the epilimnion of lakes will ensure the protection of aquatic life and aquatic habitat designated use and the maintenance of a robust aquatic community. Therefore, it would be inappropriate to apply the 5.0 milligrams per liter DO criterion throughout the entire water column.

DO and pH criterion will apply only to the epilimnion during thermal stratification. DO and pH criteria will apply throughout the water column outside of thermal stratification.

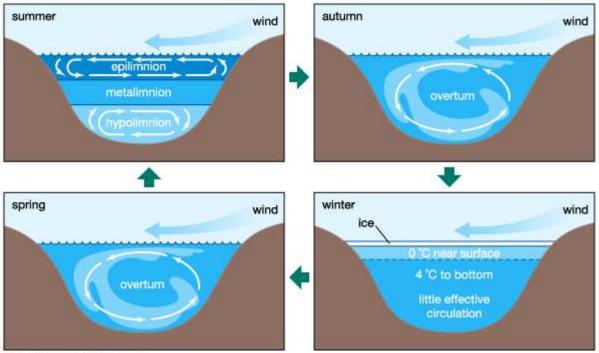



Figure 1. Diagram of Typical Lake Stratification in Missouri

C Encyclopædia Britannica, Inc.

Excess nutrient input into lakes causes an increase in primary productivity of a lake. This increase in productivity comes with an increasing demand for dissolved oxygen through both the living and the decaying portions of aquatic life. Increased productivity also causes algal populations to have exponential growth and decay rates that can cause swings in dissolved oxygen concentrations. Sudden drops in dissolved oxygen concentrations or low levels of dissolved oxygen concentrations can cause fish kills.

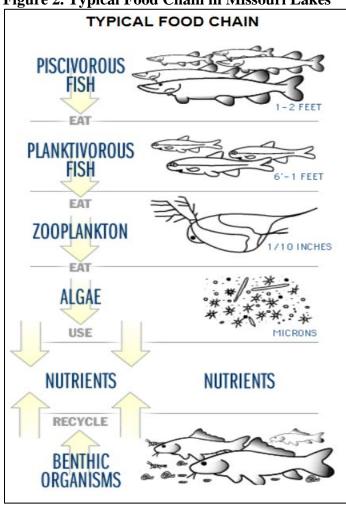
Similar to DO, water column pH levels are linked to photosynthesis and impacted by thermal stratification. During periods of high photosynthesis, carbon dioxide ( $CO_2$ ) is removed from the water column and pH increases. Conversely, when respiration and decomposition is high,  $CO_2$  levels increase and pH decreases. As described above, the natural temperature gradients during the summer growing season create conditions whereby the epilimnion is dominated by primary production and the hypolimnion is dominated by respiration. Therefore, the pH levels will typically be higher in the epilimnion and lower in the hypolimnion. Because the nutrient criteria are focused on the biological response variable Chl-a, which is highest in the epilimnion in the summer, it is appropriate to also limit pH assessments to the epilimnion.

Excessive algal production can cause the pH of the epilimnion to rise above 9.0 in some cases. When pH falls outside of this range due to algal blooms and their eventual decomposition, aquatic life which requires a stable range of pH conditions to survive can suffer. As mentioned for dissolved oxygen, assessment of pH in the epilimnion of lakes against WQS will ensure the protection of aquatic life and aquatic habitat designated use and the maintenance of a robust aquatic community.

- At the time of sample collection, dissolved oxygen, water temperature, and pH will be measured near the surface as well as via sonde probe throughout the depth of the epilimnion (water surface to the thermocline). The sonde probe continuously collects data for a short period of time as it is lowered through the water column. This data is currently collected by the SLAP under a cooperative agreement with the Missouri Department of Natural Resources.
- Following the Listing Methodology Document procedure for dissolved oxygen: If more than 10% of the measurements are below 5.0 mg/L minimum to protect aquatic life, the binomial probability will be used for determining if the criterion has been exceeded.
- Following the Listing Methodology Document procedure for pH: If more than 10% of the measurements are outside the 6.5 to 9.0 range to protect aquatic life, the binomial probability will be used for determining if the criterion has been exceeded.
- c. 10 CSR 20-7.031(5)(N)6.C. Cyanobacteria counts in excess of one hundred thousand (100,000) cells per milliliter (cells/mL)

Cell counts of cyanobacteria (blue-green algae) greater than one hundred thousand can be indicative of a harmful algal bloom (HAB) and the increased probability of algal toxins in the lake. Certain species of blue-green algae can produce toxins which are harmful to both aquatic life and terrestrial life (including humans and pets). *Microcystis* can produce microcystin (liver toxin) and anatoxin-a (neurotoxin). *Dolichospermum*, in addition to producing microcystin and anatoxin-a, can also produce cylindrospermopsin (liver toxin) and saxitoxin (nerve toxin). These toxins can cause adverse effects on aquatic life, as well as humans recreating on surface waters. The Oregon Health Authority has developed recreational guidelines for issuing public health advisories in relation to algal toxins (Oregon Health Authority, 2018). Until EPA develops Section 304(a) criteria for algal

toxins, the values contained in the Oregon Health Authority document will serve as a surrogate indicator that Section 101(a) uses (i.e., aquatic habitat protection and recreational uses) are not being met. Direct measurement of cyanobacteria cell counts is limited and currently prohibitively expensive. Until this method becomes more widely adopted or technology improves to reduce the cost, the Department will collect data on algal toxin concentrations as a surrogate indicator for cyanobacteria counts.


- Cyanobacteria counts greater than 100,000 cells per milliliter suggest the presence and impact of a harmful algal bloom (HAB) in the water body. HABs and the algal toxins that are produced as a result pose a threat to the aquatic habitat protection and recreational designated uses (Oregon Health Authority, 2018). This data may be collected by agencies or county governments and when available the Department will request and use this information. The cyanobacteria cell count is based on the threat of unacceptable levels of algal toxins, which are currently being collected by the SLAP and the LMVP under a cooperative agreement with the Department.
- Any algal toxin values exceeding the following thresholds during the same year one of the nutrient screening levels was exceeded will constitute evidence of impairment. Two of these toxins are currently collected by the SLAP and the LMVP. The SLAP will begin collecting all four in 2018 under a cooperative agreement with the Department.

Microcystin	4.0 µg/L
Cylindospermopsin	8.0 µg/L
Anatoxin-a	8.0 µg/L
Saxitoxin	4.0 µg/L

These toxin levels are associated with a total toxigenic algal species cell count greater than or equal to 100,000 cell/mL. They are also associated with an algal cell count of greater than or equal to 40,000 cells/mL of Microcystis or Planktothrix species.

 d. 10 CSR 20-7.031(5)(N)6.D. – Observed shifts in aquatic diversity attributed to eutrophication

The health of an ecosystem can be assessed by looking at different aspects, one of which is the food web or chain (Figure 2). Chemical measurements can be taken to assess the nutrients and chlorophyll (as a surrogate for algae). Relative abundances of fish at the various levels of the food chain can be surveyed to see if it is in balance. High nutrient inputs along with high levels of suspended solids can cause a decrease in the number of sight feeding predators and an increase in the number of the prey that the predators are unable to catch. More numerous prey puts a strain on the resources available, resulting in smaller prey and smaller, less numerous predators. This imbalance in the number and/or size of fish, or a shift to less sight-feeding fish in favor of bottom feeding fish such as carp, due to eutrophication is a cause for concern.





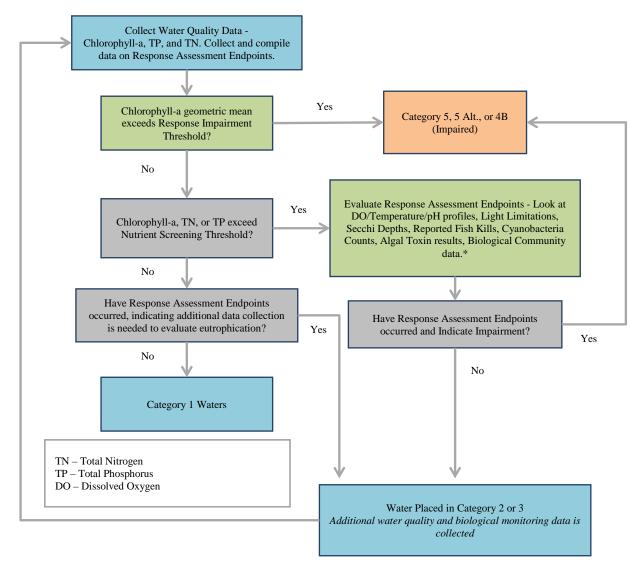
As the state agency responsible for the protection and management of fish, forest, and wildlife resources in the state, the Missouri Department of Conservation regularly monitors fish populations of primary sport fishes (black bass, crappie, catfish) in major reservoirs (typically annually) to ensure the agency has appropriate regulations in place to manage these fish populations for today and into the future. These populations of piscivorous (i.e., fish eating) sport-fish, and the many planktivorous (i.e., plankton eating) non-sportfish that are their prey, are self-sustaining in Missouri's major reservoirs. Correspondence with MDC Fisheries Division confirms the agency does not conduct supplemental stocking for primary sport fishes (i.e., apex predators) nor does the agency conduct supplemental stocking of non-sportfish lower down the food chain (MDC, 2018).

Although MDC does not stock the primary sport and non-sport fishes noted above, MDC does stock additional fish species to provide a "bonus" or "specialty" sport fishing opportunity. Species included in the bonus or specialty fishing opportunities include (but are not limited to) paddlefish, rainbow trout, brown trout, striped bass, hybrid striped bass, walleye, and muskellunge. Many of these fish species are non-native and would not be capable of reproducing or sustaining populations in Missouri lakes.

http://www.lakeaccess.org

MDC uses various sampling techniques including electrofishing, netting, creel surveys, and angler surveys to collect information related to fish populations and angler satisfaction over time. These data help to inform MDC's regulations for the capture of fish within Missouri lakes to ensure self-sustaining populations of sport- and non-sport fishes. The Department, in consultation with MDC, will use these data to determine whether shifts in aquatic diversity attributed to eutrophication are occurring in a lake. These data are contained within MDC's Fisheries Information Network System (FINS) and annual reports of fish stocking activities such as the "Fish Stocking for Public Fishing and Aquatic Resource Education." In support of this approach, the last eight calendar year reports (CY 2010 – 2017) generated by MDC and supporting data have been included with this submittal.

- The Department will request any available information on the potential biological shifts in fish or invertebrate communities related to eutrophication. This includes data from other agencies (such as the U.S. Fish and Wildlife Service) that monitor the populations of game fish.
- The MDC regularly monitors fish populations of primary sport fishes (black bass, crappie, and catfish) in major reservoirs (typically annually) to ensure the agency has appropriate regulations in place to manage these fish populations for today and into the future. These populations of sport-fish, and the non-sportfish that are their prey, are self-sustaining in Missouri's major reservoirs.
- The MDC uses various sampling techniques including electrofishing, netting, creel surveys, and angler surveys to collect information related to fish populations and angler satisfaction over time. These data in consultation with MDC will be used to determine whether shifts in aquatic diversity attributed to eutrophication are occurring in a lake.
- The MDC produces annual fishery management reports for Missouri's major lakes and reservoirs that detail the health of the fishery and includes number of species, catch per unit effort, relative density of fish and measures of fish condition and population size structure. One such example of an annual fishery management report is the Stockton Reservoir 2017 Annual Lake Report (published March 2018). The data supporting MDC's annual fishery management reports can also be made available to the Department. The Missouri Department of Natural Resources will request these annual reports and data from MDC.
- e. 10 CSR 20-7.031(5)(N)6.E. Excessive levels of mineral turbidity that consistently limit algal productivity during the period May 1 September 30 (i.e., light limitations)


It is widely recognized that mineral turbidity reduces transparency and thereby limits algal production (Jones and Hubbart, 2011). Excessive mineral turbidity and reduced water column transparency can suppress Chl-a levels despite high levels of nutrients. Pronounced and extended turbidity events could have the effect of reducing Chl-a on an average annual basis but still allow for periodically high peaks or algal blooms after sedimentation of mineral turbidity and increased transparency. Under such conditions, waterbodies experiencing harmful algal blooms may go undetected when assessed as an

average annual geomean. The intent of this response variable is to identify such waterbodies that might otherwise go unidentified as impaired.

There are several ways to determine light availability in a lake. Some examples include: Secchi depth, light attenuation and photosynthetically active radiation (PAR), Chl-a/TP ratios, and measurements for turbidity and suspended sediments. All of these methods can provide additional information on the amount of light available in the epilimnion and how deep it penetrates into the lake. These data will be used to determine whether the lake has excess sediment in relation to nutrients for eutrophication impacts to occur.

- Excessive mineral turbidity can reduce light penetration within the photic zone of lakes and limit algal productivity due to the lack of sunlight. Water clarity can be expressed through measurements such as Secchi depth, turbidity, and suspended solids. These data are collected by the SLAP and the LMVP under a cooperative agreement with the Department.
- Measured lake Secchi depths less than 0.6 meters in the Plains, 0.7 meters in the Ozark Border, and 0.9 meters in the Ozark Highlands is likely an indicator of excessive mineral turbidity that limits algal productivity in the water body (MDC 2012). This data is collected by the SLAP and the LMVP under a cooperative agreement with the Department. Yearly average Secchi depths below the applicable ecoregional value may constitute evidence of impairment. Additional analysis of average Chl-a/TP ratios will also be conducted before determining impairment status, as described below.
- The ratio of the average Chl-a to the average TP is an additional indicator of chlorophyll suppression in lakes due to mineral turbidity. A mean Chl-a/TP ratio less than or equal to 0.15 and a mean inorganic suspended solids value greater than or equal to 10 mg/L is suggestive of excessive mineral turbidity which limits algal productivity (Jones and Hubbart, 2011). Unless attributed to other physical factors, Chl-a/TP ratios at or below 0.15 and an ISS value greater than or equal to 10 mg/L as determined by yearly means will serve as an indicator of excessive mineral turbidity and constitute evidence of impairment. Assessment threshold values for Secchi depth, Chl-a/TP ratio, and ISS shall all be exceeded before determining a water is impaired.
- The Department will use data collected using a Li-Cor quantum sensor. Data collected with this equipment consists of light attenuation and photosynthetically active radiation (PAR). Until scientific literature on this new technology can be developed, the Department will rely on best professional judgment for when the data indicate light availability is limiting algal production to the point that if there were less or no limitation then the Chl-a values would be likely to exceed the criterion. This data will be collected by the SLAP starting in 2018 under a cooperative agreement with the Department.

# Figure 3. Missouri Ecoregional Numeric Nutrient Criteria Decision Framework based on the Bioconfirmation Approach.



## **Trend Analysis**

The Department currently reports on physiographic region trends in Missouri's 305(b) Report. The latest version as well as past versions can be found on Missouri's 303(d) website: <u>https://dnr.mo.gov/env/wpp/waterquality/303d/303d.htm</u>. These trends have been reported every cycle in the 305(b) Report since 1990. Trends for the physiographic regions are calculated based on at least 20 years of data. Trends are developed for Secchi depth, total phosphorus, total nitrogen, total chlorophyll, nonvolatile suspended solids, and volatile suspended solids.

The Department will evaluate individual lake trends for total phosphorus, total nitrogen, and Chla. Nutrients and chlorophyll can be seasonally variable, as well as wet and dry weather dependent. A minimum of ten years of data will be necessary to confidently evaluate water quality trends in Missouri lakes due to significant annual variability and differing hydrologic conditions. Longer time periods are needed for more accurate predictions of impairment.

- When evaluating trends, confounding, or exogenous variables, such as natural phenomena (e.g., rainfall, flushing rate and temperature), must be controlled for.
- The trend must be statistically significant. This process involves standard statistical modeling, such as least squares regression or Locally Weighted Scatterplot Smoothing (LOWESS) analysis. To be considered statistically significant, the p value associated with the residuals trend analysis must be less than 0.05.
- Impairment decisions based on trend analysis should, at a minimum, demonstrate that the slope of the projected trend line is expected to exceed the chlorophyll criterion within 5 years and that there is evidence of anthropogenic nutrient enrichment. If the slope of the projected trend line is expected to exceed the chlorophyll criterion in greater than 5 years, the lake will be prioritized for additional monitoring and identified as a potential project for a 319 protection plan. A list of lakes that have increasing trends of nutrients or Chl-a will be added as an appendix to Missouri's future 305(b) Reports.

The Department will look for statistically significant trends in the DO/pH profile of lakes throughout the entire water column. Areas the Department will look at may include, but are limited to: mixing volumes, mixing depths, and severity of anoxia in the hypolimnion.

## **Examples of Assessments**

## Example 1

Lake Girardeau is in the Ozark Border ecoregion of Missouri. The Chl-a response impairment threshold for the Ozark Border is  $22\mu$ g/L. The nutrient screening thresholds for the Ozark Border are: Chl-a =  $13\mu$ g/L; TP = $40\mu$ g/L; and TN =  $733\mu$ g/L. Lake Girardeau was sampled in 1994, 2004, 2005, 2008, and 2015. The geometric means for Chl-a, TN, and TP are in Table 2. The Chl-a geometric mean was higher than the response impairment threshold in 2015. The nutrient screening thresholds for TN and TP were also exceeded that year.

- The sample data do not show any excursions of the DO and pH criteria
- The average Secchi depths during both years of nutrient screening threshold exceedance are greater than 0.7 meters
- Chl-a/TP ratio is above 0.15 and inorganic suspended solids/nonvolatile suspended solids (ISS/NVSS) is less than or equal to 10 mg/L

There is not enough data to evaluate a trend. Therefore, Lake Girardeau would be placed into category 2B and would be placed into the high priority list for additional data collection.

Tuble 2. Lake Ghardeau Tearry Geometric Means					
Voor	Chl-a Geomean	TN Geomean	TP Geomean	Avg. Secchi	
I cai	(µg/L)	(µg/L)	(µg/L)	Depth (m)	
1994		1266	68	0.6	
2004	21.5	582	30	0.89	
2005	10.5	541	24	1.58	
2008	18.5	528	28	1.27	
2015	34.2	853	40	0.87	
	Year 1994 2004 2005 2008	Year         Chl-a Geomean (μg/L)           1994         2004           2004         21.5           2005         10.5           2008         18.5	YearChl-a Geomean ( $\mu g/L$ )TN Geomean ( $\mu g/L$ )19941266200421.5200510.5200818.5	YearChl-a Geomean $(\mu g/L)$ TN Geomean $(\mu g/L)$ TP Geomean $(\mu g/L)$ 1994126668200421.558230200510.554124200818.552828	

## Table 2. Lake Girardeau Yearly Geometric Means

## Example 2

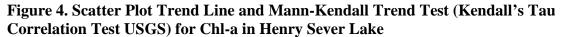
Lake DiSalvo is in the Ozark Highlands ecoregion of Missouri. The Chl-a response impairment threshold for the Ozark Highlands is  $15\mu g/L$ . The nutrient screening thresholds for the Ozark Highlands are: Chl-a =  $6\mu g/L$ ; TP = $16\mu g/L$ ; and TN =  $401\mu g/L$ . Lake DiSalvo was sampled in 2011, 2012, 2014, 2015, and 2016. The geometric means for Chl-a, TN, and TP are in Table 3. The geometric mean for Chl-a exceeded the response impairment threshold every year since 2011.

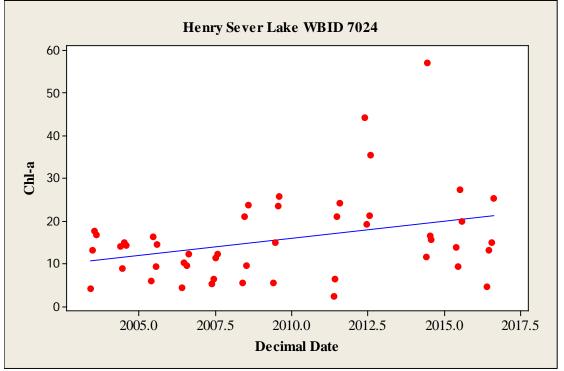
Lake DiSalvo would be placed into category 5 and the 303(d) list for Chl-a.

Year	Chl-a Geomean (µg/L)	TN Geomean (µg/L)	TP Geomean (µg/L)
2011	47.7	768	77
2012	58.7	941	107
2014	105.8	1508	119
2015	82.8	1079	82
2016	44.1	928	77

## Table 3. Lake DiSalvo Yearly Geometric Means

## Example 3


Henry Sever Lake is in the Plains ecoregion of Missouri. The Chl-a response impairment threshold for the Plains is  $30\mu g/L$ . The nutrient screening thresholds for the Plains are: Chl-a =  $18\mu g/L$ ; TP = $49\mu g/L$ ; and TN =  $843\mu g/L$ . Henry Sever Lake was sampled in 2011, 2012, 2014, 2015, and 2016. The geometric means for Chl-a, TN, and TP are in Table 4. The geometric mean for Chl-a did not exceed the response impairment threshold in any of these years. Some or all of the nutrient screening thresholds were exceeded in 2012 and 2014. Figure 4 shows the scatter plot, trend line, Mann-Kendall trend test and the Theil-Sen Slope for Chl-a in Henry Sever Lake.


- Half of the pH values in 2012 exceed the pH criteria. None of the DO values exceed the criteria.
- The average Secchi depth during the years of nutrient screening threshold exceedance is 1.12 meters (2012) and 1.11 (2014) meters
- Chl-a/TP ratio is above 0.15
- Mann-Kendall Trend test is significant
- Trend data (Figure 4) shows a scatter plot with a trendline. The Theil-Sen slope of 0.6223  $\mu$ g/L per year shows it is estimated to reach 30  $\mu$ g/L theoretically in 2034.

Therefore, Henry Sever Lake would go into category 2B and will be placed into the priority list for additional data collection.

Year	Chl-a Geomean (µg/L)	TN Geomean (µg/L)	TP Geomean (µg/L)
2003	11.19	742	43
2004	12.79	966	37
2005	10.70	1079	51
2006	8.47	871	43
2007	8.22	725	66
2008	12.61	1354	75
2009	14.90	838	65
2011	9.15	957	42
2012	28.30	898	41
2014	20.28	854	49
2015	16.21	772	36
2016	12.29	737	31

Table 4. Henry Sever Lake Yearly Geometric Means





Kendall's tau Correlation Test, US Geological Survey, 2005

Data set: Henry Sever Lake Chl-a - Mann-Kendall test, input type 4 The tau correlation coefficient is 0.222S = 250.0, z = 2.213, p = 0.0269

The relation may be described by the equation (Theil-Sen Slope estimator): Y = -1235.9 + 0.6223 * X

## **Total Maximum Daily Load Development for Nutrient Impaired Waters**

The Department will address water quality impairments of the numeric nutrient criteria or violations of narrative criteria where evidence shows excess nutrients to be a cause through the development of total maximum daily loads (TMDLs). TMDL development will occur in accordance with the schedules and priority rankings required as part of the biennial submittal of the state's 303(d) list of impaired waters per federal regulations at 40 CFR 130.7(b)(4). When developing TMDL priorities of 303(d)-listed waters, the Department will also consider alternative approaches that may result in attainment of water quality standards more quickly than a TMDL.

As with all TMDLs and in accordance with federal regulations at 40 CFR 130.7(c)(1), TMDLs developed by the Department to address nutrient impairments will be written to meet water quality standards, including narrative criteria or applicable numeric nutrient criteria. TMDLs developed to meet applicable numeric nutrient criteria will consider targets appropriate for attaining chlorophyll-a response impairment thresholds with consideration given to other causal and response parameter concentrations to ensure water quality standards are met and maintained. Depending upon the nature and source of impairment, TMDLs developed to address exceedances of narrative criteria may also target site-specific or reference chlorophyll-a response thresholds or a combination of other factors to ensure water quality standards are met, such as phosphorus, pH, and dissolved oxygen. Such factors and numeric translators used for developing TMDL targets to address a narrative criteria impairment will only be applicable to water bodies for which TMDLs have been developed and approved. As required by Section 303(d)(1)(C) of the Clean Water Act and federal regulations at 40 CFR 130.7(c)(1), all TMDLs will include an implicit and/or explicit margin of safety to provide additional certainty that the calculated TMDL allocations to point and nonpoint sources of nutrients will result in attainment of water quality standards.

During the development of nutrient TMDLs, the Department will evaluate available datasets and other relevant information to determine appropriate modeling approaches for calculating loading targets and estimating existing loads. One such model to be considered is BATHTUB, which was developed by the U.S. Army Corps of Engineers, and is currently in use for nutrient TMDL development by states within EPA Regions 5 and 7 to address lake eutrophication issues. Other models may be considered depending upon complexity and data needs. Estimates of upstream nutrient loading may be calculated directly where nutrient data is available or may be estimated through models, such as the Spreadsheet Tool for Estimating Pollutant Load (STEPL).

In conjunction with TMDL development, the Department also develops supplemental implementation plans for all TMDLs. These plans provide detailed strategies and actions that will achieve the established goals and water quality targets. TMDL implementation should follow an adaptive implementation approach that makes progress towards achieving water quality goals while using new data and information to reduce uncertainty and adjust implementation activities. The Department recognizes that technical guidance and support are critical to achieving the goals of most TMDLs. While a TMDL calculates the maximum loading that an impaired water body can assimilate and still meet water quality standards, the supplemental implementation plan provides additional information regarding best management practices, funding, and potential stakeholders in the watershed. These implementation plans

serve to provide a general guide to permit writers, nonpoint source program coordinators, and other department staff, as well as soil and water conservation districts, local governments, permitted entities, regional planning commissions, watershed managers, and citizen groups for achieving the calculated wasteload and load allocations. Although not required by EPA, TMDL implementation plans will be placed on public notice and made available for public comment along with the corresponding draft TMDLs, which are made available for public review as described in the State Continuing Planning Process as required by federal regulations at 40 CFR 130.7.

## **Part II. Permit Implementation**

The Department is fully delegated by EPA through Section 402(b) of the Clean Water Act to administer its National Pollutant Discharge Elimination System Permitting Program. The "Missouri's Nutrient Criteria" section of this document describes each part of Missouri's WQS that contain nutrient criteria. Notwithstanding, all permitting will be consistent with federal and state requirements. The following are additional regulations that the Department uses to implement point source nutrient reductions.

#### Effluent Regulation [10 CSR 20-7.015(3)]

The Effluent Regulation requires dischargers to the Table Rock Lake watershed and Lake Taneycomo and its tributaries between Table Rock Dam and Power Site Dam to not exceed 0.5 mg/L of phosphorus as a monthly average.

Exemptions to this requirement:

- Facilities discharging to Lake Taneycomo and its tributaries between Table Rock Dam and Power Site Dam permitted prior to May 9, 1994, and with a design flow less than 22,500 gallons per day (GPD) that have not had an increase in capacity.
- Facilities discharging to the Table Rock Lake watershed permitted prior to November 30, 1999, and with a design flow less than 22,500 GPD that have not had an increase in capacity. All dischargers to the White River basin are required to monitor for phosphorus.

## Effluent Regulation [10 CSR 20-7.015(9)(D)7.]

The Effluent Regulation requires facilities that typically discharge nutrients with a design flow greater than 100,000 GPD to monitor discharges for TN and TP quarterly. Soon the Department will be proposing an amendment to the regulation that would expand the monitoring requirements in various ways. First, facilities with a design flow greater than 1,000,000 GPD will be required to monitor monthly instead of quarterly. Second, instead of reporting TN, facilities will need to report nitrogen's constituents as: total Kjeldahl nitrogen, nitrate plus nitrite, and ammonia. Third, the facility will need to monitor influent for a period of time, in addition to effluent. The Department notes that many publicly-owned treatment works have voluntarily performed nutrient sampling at greater frequencies than required in the regulation.

## **Implementing a Three-Phase Nutrient Reduction Approach**

The following implementation procedures for point source nutrient reduction are divided into three phases: Data Collection and Analysis, Plant Optimization, and Final Effluent Limitations. The three-phase approach is applicable for facilities that discharge to a lake watershed where the new numeric nutrient criteria apply; however, there are exceptions:

- Missouri's effluent regulation [10 CSR 20-7.015(3)] requires phosphorus effluent limitations or monitoring requirements in permits for facilities discharging to the Table Rock Lake and Lake Taneycomo watersheds. The effluent regulation supersedes the implementation procedures of this plan except in situations where this plan is more stringent.
- This plan does not impact permit limitations that were established based on site-specific nutrient criteria found in Table N of the WQS.
- Industrial facilities that discharge elevated concentrations of nutrients may require alternate implementation measures to ensure that water quality is protected.

• Facilities that discharge to impaired lake watersheds based on either new or existing nutrient criteria will follow different procedures. See the "Impaired Lakes" section for further information.

This plan does not prohibit establishing alternative methods of analysis, permit limits, or requirements provided that the alternatives are technically sound, consistent with state and federal regulations, and are protective of water quality.

#### Phase 1 – Data Collection and Analysis

Nutrient data collection is a necessary first step for multiple reasons.

- 1) Facilities will use the data to determine current treatment capabilities regarding nutrient removal.
- 2) Permit writers will use the data in Phase 3 to determine if reasonable potential (RP) for a discharge to cause or contribute to an excursion of the nutrient criteria exists.
- 3) The data will aid the Department in conducting analyses to determine nutrient loading contributions from point sources versus nonpoint sources into lake watersheds.

The Effluent Regulation [10 CSR 20-7.015] requires facilities that typically discharge nutrients with a design flow greater than 100,000 GPD to monitor discharges for TN and TP quarterly. Currently, the Department is proposing an amendment to the regulation that would expand the monitoring requirements in various ways. First, facilities with a design flow greater than 1,000,000 GPD will be required to monitor monthly instead of quarterly. Second, instead of reporting TN, facilities will need to report nitrogen's constituents as: total Kjeldahl nitrogen, nitrate plus nitrite, and ammonia. Third, the facility will need to monitor influent, for a period of time, in addition to effluent.

The Department will generally not require nutrient monitoring for facilities that discharge less than or equal to 100,000 GPD because it does not anticipate these discharges will contribute a significant portion to the total nutrient load in lake watersheds. The total design flow of Missouri's domestic wastewater facilities is 1,324 million gallons per day. Facilities with a design flow greater than 100,000 GPD discharge 1,288 million gallons per day. While smaller facilities make up 82% of total facilities in number, they contribute only 3% of the total daily flow. Not only do facilities that discharge less than or equal to 100,000 GPD make up a minimal portion of the point source loading, but that contribution is made even more insignificant when considering the total nutrient load from both point and nonpoint sources. The USGS spatially referenced regression on watershed (SPARROW) attributes model provides estimates of sources of TN and TP transported from the Mississippi River Basin to the Gulf of Mexico (Robertson and Saad, 2013). At this basin scale, relative nutrient contribution from wastewater treatment plants is estimated to be only 7% of TN and 13% of TP. The Department will develop nutrient reduction requirements for facilities discharging below 100,000 GPD if localized impacts from specific small facilities are identified.

WS #6.

Permits for facilities that typically discharge nutrients with a design flow greater than 100,000 GPD will require monitoring of the influent and effluent for the following parameters:

- Total Phosphorus
- Total Kjeldahl Nitrogen
- Nitrate plus Nitrite
- Ammonia

Because there are existing numeric criteria for ammonia in the WQS, these facilities likely already have permit monitoring requirements and/or effluent limitations in their permits for ammonia.

Design flow in GPD	Sampling frequency
100,001-1,000,000	Quarterly
1,000,001 and greater	Monthly

## Table 5. Sampling Frequency by Design Flow

## **Phase 2 – Voluntary Plant Optimization and Source Controls**

After permittees have completed the data collection process outlined in Phase 1, permittees and the Department will have an understanding of current treatment capabilities of the facility. Permittees can then elect to study and implement plant optimization or source control measures where they anticipate being able to reduce nutrient discharges with minimal capital and/or operational costs. This voluntary phase of plant optimization and/or source controls will provide permittees with time (up to 5 years) to take cost-effective strategies for early nutrient reductions. If permittees elect to not take advantage of this Phase, then the Department will use data collected under Phase 1 to evaluate RP and develop nutrient permit limitations, if needed.

As a part of Missouri's Nutrient Loss Reduction Strategy, the Department will be conducting a study to determine attainable nutrient reduction values based upon various wastewater treatment technologies. This entails an analysis of point source dischargers and available discharge data to determine nutrient removal rates of different technologies throughout the state. Depending on existing treatment process design, operational adjustments can potentially increase the removal efficiency of TN without significant capital investments on plant upgrades. This approach may be more difficult for TP; however, reducing phosphorus from entering the treatment plant can be an effective strategy. These cost-effective efforts may significantly reduce point source loading in the watershed.

Permits for facilities that typically discharge nutrients with a design flow of greater than 100,000 GPD and voluntarily engage into Phase 2 will include a special condition requiring the development and implementation of a Plant Optimization Plan and a Phosphorus Minimization Plan. Because Phase 2 is voluntary, Missouri affordability statutes do not apply to these permit conditions. The Department will develop and provide the following resources to permittees:

- Operator Training Workshops Engineering staff and water specialists will offer training opportunities to operators on practical methods of improving treatment capabilities in current operations.
- Online Resources The Department will provide online resources including fact sheets and links to information that will aid in the development of Plant Optimization Plans and

Phosphorus Minimization Plans. Easy-to-use templates for these plans will also be provided by the Department.

 Staff Assistance – Department staff are always available to assist permittees by phone and email. Permittees may request compliance assistance visits on-line at <u>https://dnr.mo.gov/cav/compliance.htm</u>.

During Phase 2, permittees will maintain the monitoring requirements established in Phase 1. With this data, removal efficiency and phosphorus minimization efforts can be tracked throughout Phase 2. Permittees who are able to show significant improvements in treatment plant operations are more likely to be issued permits with less stringent nutrient requirements as the improvements may show that there is no RP to cause or contribute to an excursion of the nutrient criteria. With some effort, plant optimization may be a more economically viable option than costly upgrades. However, depending on treatment processes, plant optimization efforts may detrimentally impact effluent performance for other important pollutants, such as biochemical oxygen demand and ammonia. In addition, plant optimization strategies for facilities below design capacity could use (on an interim or permanent basis) reserved treatment plant capacity (e.g., basin volumes) originally designed to serve community growth. Therefore, the Department will not establish nutrient reduction baselines for future limits based upon optimized plant loading. Rather, the Department will include technology-based effluent goals in permits that support plant optimization and/or source reduction goals.

#### **Phase 3 – Final Effluent Limitations**

During the third phase of the plan, final effluent limitations will be established in permits where RP exists. Chl-a data from Missouri's lakes are strongly correlated with TN and TP. However, studies show through regression models that TN accounts for less Chl-a variation compared to TP (Jones and Knowlton, 2005). This suggests that TP is the limiting nutrient in most of Missouri's lakes; therefore, phosphorus reductions made at wastewater facilities will strongly contribute to water quality improvements in lakes with elevated levels of Chl-a and TP. As a Missouri-specific demonstration, permits for facilities discharging to the Table Rock Lake and Lake Taneycomo watersheds have contained technology-based phosphorus effluent limitations for decades per Missouri's Effluent Regulation [10 CSR 20-7.015(3)]. Because of this requirement, most permittees in these areas have installed a chemical feed to their facilities' treatment processes to facilitate phosphorus removal which in turn has greatly reduced the number of algal blooms on these lakes. Water quality in these watersheds has improved since the requirements were first established, suggesting that phosphorus removal technologies from point sources are responsible for the improvement.

By Phase 1, or the voluntary Phase 2, facilities have collected and reported sufficient data for an RP determination to be made. Determining RP for a discharge to cause or contribute to an excursion of the nutrient criteria can be complicated using numeric nutrient criteria for Chl-a. Furthermore, the typical statistical analysis used by permit writers to determine RP for toxics cannot be used to determine RP for Chl-a because it is not a discharged pollutant that can be sampled from a facility's outfall. Because exceedance of the numeric Chl-a criteria is a response to excess TN and/or TP in the water body, regional correlations between nutrients and algal biomass will be used to set in-lake nutrient targets. Then, watershed modeling will be used to identify and estimate sources (both point and nonpoint sources) of TN and TP loads and quantify

the proportion of contributions from these sources into the watershed, which is necessary to make a RP determination for a specific facility.

Facilities that typically discharge nutrients with a design flow of greater than 100,000 GPD will be modeled. If watershed modeling shows that there is RP for a discharge to cause or contribute to an excursion of the Chl-a criteria, TP effluent limits (with a compliance schedule) will be established in the permit requiring the permittee to install phosphorus removal at the facility. This approach will need adjustments in situations where watershed modeling shows TN as the limiting pollutant over TP. Nutrient limits will be set to achieve in-lake nutrient targets based upon source sector contributions and within the point source sector, the relative contribution of each such source. Relative contribution should take into account early nutrient reduction actions by individual dischargers. The Department also intends to provide opportunities for watershedbased, bubble permitting to facilitate cost-effective point source nutrient reductions and compliance as well as fostering collaboration between permittees.

## **Impaired Lakes**

In cases where a facility discharges to a watershed that contains a lake with nutrient impairments, supplemental procedures, in addition to those previously discussed in this plan, will be utilized. The first step is to determine if the facility's discharge is causing or contributing to the nutrient impairment. As discussed in Phase 3, watershed modeling will be used to identify the sources (both point and nonpoint) of TN and TP loads and quantify the proportion of contributions from these sources into the watershed, which is necessary to make the RP determination for specific facilities.

If, through modeling or other means, a determination is made that a particular facility *is not* causing or contributing to the impairment, then effluent limitations are not needed at that time to protect water quality. However, the permit writer may determine that nutrient monitoring is still needed to make future RP determinations.

If it is shown that the facility *is* causing or contributing to the impairment, effluent limitations will be established that are protective of water quality. This can be accomplished in several ways:

- The permit writer can establish TP effluent limitations based on the capabilities of specific treatment technologies with the supporting rationale that potential TP reductions made by the facility are protective of water quality.
- The permit writer can establish effluent limitations based on wasteload allocations identified through watershed and lake modeling based upon point source relative contribution.
- Following TMDL development, wasteload allocations will be established and permit writers will establish effluent limitations from those wasteload allocations.

Other methods of effluent limitation derivation are allowed with appropriate justification by the permit writer.

176

Implementation procedures for new sources differ from those previously listed in this plan. For the purposes of this plan, "new sources" refers to new, altered, or expanding discharges of TP and/or TN. Per Missouri's WQS [10 CSR 20-7.031(3)], for new sources, the Department will document by means of antidegradation review that the use of a water body's available assimilative capacity is justified. Missouri's Antidegradation Implementation Procedures provide a detailed process for conducting antidegradation reviews, which will be applicable to any new or expanding discharges of nutrients into lake watersheds. Permittees must submit an antidegradation review to the Department prior to establishing, altering, or expanding discharges.

The following procedures for new sources are split between lakes with and without nutrient impairments.

<u>Scenario 1: The new source requests to discharge to a watershed that contains a lake *with* a <u>nutrient impairment</u>. The Department will conduct watershed modeling to determine whether the facility's discharge would cause or contribute to the nutrient impairment. Permitting decisions that fall under this scenario will be based upon a Tier 1 antidegradation review, which are designed to prohibit degradation that may cause or contribute to the impairment of a beneficial use. Increased pollutant loading is allowed as long as the discharge does not cause or contribute to the impairment.</u>

- If the facility's discharge is shown not to cause or contribute to the nutrient impairment, then the permit writer will establish best available technology limits for TP in the permit.
- If the facility's discharge is shown to cause or contribute to the nutrient impairment, then the permittee will be required to utilize a more advanced level of wastewater treatment or find an alternative method of wastewater disposal.

<u>Scenario 2: The new source requests to discharge to a watershed that contains a lake *without* a <u>nutrient impairment</u>. There is little need for the data collection and plant optimization conducted in Phases 1 and 2 for new facilities. Because of this, permits that fall under this scenario will include effluent limitations for TP in their initial permit based upon a Tier 2 antidegradation review.</u>

177

## **Potential Flexibilities for Permittees**

The Department has multiple tools to aid permittees with permit compliance. As permits are renewed, permittees may find it difficult to meet new effluent limitations and requirements. Depending on the situation, each flexibility listed below offers its own set of results and benefits.

Permit Flexibility	Quick Facts	
Schedules of Compliance <u>10 CSR 20-7.015(9)(C)</u>	<ul> <li>Allows permittees time to comply with newly established effluent limitations</li> <li>Establishes yearly (or more frequent) milestones</li> <li>Established using a cost analysis which takes into account a community's socioeconomic and financial capability status for publicly-owned treatment works</li> <li>Must comply with 40 CFR 122.47</li> <li>May be extended with proper justification</li> </ul>	
WQS Variance	May extend beyond the permit term Variances are paths to improve water quality over the variance term	
<u>10 CSR 20-7.031(12)</u>	<ul> <li>Provides permittees time to achieve incremental improvements to ultimately work toward compliance with WQS through a Pollutant Minimization Program</li> <li>Establishes a time-limited WQS, and therefore, must be approved by the Missouri Clean Water Commission and EPA</li> </ul>	
Watershed-based Permits	<ul> <li>Watershed-based permitting is an approach to develop permits for multiple point sources located within a defined geographic area.</li> <li>Allows the Department to consider watershed goals and the impact of multiple nutrient sources.</li> </ul>	
Water Quality Trading <u>Missouri Water Quality</u> <u>Trading Framework</u>	<ul> <li>Trading is a market-based approach for compliance with effluent limitations</li> <li>Instead of, or in addition to, upgrading facilities, permittees can buy and sell water quality credits to meet effluent limitations</li> <li>Point to point source trades or nonpoint source to point source trades can be made</li> </ul>	
Integrated Management Plans <u>Missouri Integrated</u> <u>Planning Framework</u>	<ul> <li>Allows communities to prioritize investments to meet environmental requirements</li> <li>Plan development is voluntary and the responsibility of the community</li> <li>Plan development is a method to include utility rate payers in the decision making process</li> <li>May provide assurance which allows relaxation of timelines for regulatory requirements such as permit requirements, enforcement action, and TMDL development</li> </ul>	

Table 6. Regulatory Flexibilities for Permitting	Table 6.	<b>Regulatory</b>	Flexibilities	for	Permitting
--------------------------------------------------	----------	-------------------	---------------	-----	------------

## **Incentives for Early Nutrient Reduction**

Receiving water quality may benefit from earlier nutrient reductions resulting from wastewater treatment optimization, pilot testing, stress testing, new technology trials, etc. as well as from trading for nutrient reductions or offsets. The Department encourages wastewater utilities to make voluntary reductions of nutrients earlier than required, improving the receiving water quality. In exchange, permittees will receive regulatory flexibilities, such as extended compliance schedules to achieve final effluent nutrient limits or other water quality-based effluent limits. In addition, permittees adopting early nutrient reduction strategies could balance other regulatory obligations through integrated planning. Permittees also may accrue credits for watershed-based trading.

Wastewater utility participation in an early nutrient reduction is voluntary. Any method of achieving early reductions in nutrients is allowable, whether achieved with nutrient removal optimization, a water quality trade, a source reduction plan, watershed nutrient reductions, or capital improvements to implement nutrient removal. If TMDLs or other watershed-based nutrient reduction strategies are developed, baselines for utilities will be established based upon point source sector reduction requirements in the absence of such early actions (i.e., facility-specific early action performance will not be set as the future regulatory requirement). This will eliminate regulatory disincentives for taking early nutrient reduction actions.

- 1. 10 CSR 20-7.015. Effluent Regulation, 2014. Web. April 2018. https://www.sos.mo.gov/cmsimages/adrules/csr/current/10csr/10c20-7a.pdf
- 2. 10 CSR 20-7.031. Water Quality Standards, 2018. Web. April 2018. https://www.sos.mo.gov/cmsimages/adrules/csr/current/10csr/10c20-7a.pdf
- 3. Egertson, C.J., and J.A. Downing. 2004. Relationship of fish catch and composition to water quality in a suite of agriculturally eutrophic lakes. *Canadian Journal of Fisheries and Aquatic Sciences*. 61: 1784-1796.
- Jones, J.R. and J.A. Hubbart.(2011) NOTE: Empirical estimation of non-chlorophyll light attenuation in Missouri reservoirs using deviation from the maximum observed value in the Secchi-Chlorophyll relationship. Lake and Reservoir Management, 27: 1, 1-5. <u>http://dx.doi.org/10.1080/07438141.2011.554962.</u>
- 5. Jones, J.R. and M.F. Knowlton. 2005. Chlorophyll response to nutrients and non-algal seston in Missouri reservoirs and oxbow lakes. Lake and Reservoir Management, 21(3):361-371.
- 6. Missouri Department of Conservation, MDC response to DNR request for impoundment fish community, chlorophyll, and Secchi depth information for Missouri lake nutrient criteria. June 26, 2012.
- 7. Missouri Department of Conservation, Letter from Brian D. Canaday, *Missouri Department of Conservation fish stocking information EPA Nutrient Criteria*, June 18, 2018.
- 8. Missouri Department of Natural Resources. 2016. Missouri Antidegradation Implementation Procedure. <u>https://dnr.mo.gov/env/wpp/permits/docs/aip-july-13-2016-final.pdf</u>.
- 9. Missouri Department of Natural Resources. 2014. Missouri Nutrient Loss Reduction Strategy. https://dnr.mo.gov/env/wpp/mnrsc/docs/nlrs-strategy-2014.pdf
- 10. Missouri Department of Natural Resources. 2017. Rationale for Missouri Lake Numeric Nutrient Criteria. <u>https://dnr.mo.gov/env/wpp/rules/docs/mo-lake-nnc-rationale-dec-2017-final.pdf</u>.
- 11. Oregon Health Authority. 2018. Oregon Harmful Algae Surveillance (HABS) Program Public Health Advisory Guidelines Harmful Algae Blooms in Freshwater Bodies. <u>https://www.oregon.gov/oha/ph/HealthyEnvironments/Recreation/HarmfulAlgaeBlooms/Documents</u>/ HABPublicHealthAdvisoryGuidelines.pdf.
- 12. Robertson, D.M., and D.A. Saad. 2013. SPARROW models used to understand nutrient sources in the Mississippi/Atchafalaya River Basin. *Journal of Environmental Quality* 42:1422-1440. doi: 10.2134/jeq2013.02.0066.
- 13. U.S. Environmental Protection Agency. 2017. Mississippi River/Gulf of Mexico Watershed Nutrient Task Force, 2017 Report to Congress. <u>https://www.epa.gov/sites/production/files/2017-11/documents/hypoxia task force report to congress 2017 final.pdf</u>.

# Appendices

- A Missouri Department of Conservation Fish Stocking Information Letter
- B Methodology for the Development of the 2020 Section 303(d) List in Missouri

WS #6.



# **MISSOURI DEPARTMENT OF CONSERVATION**

Headquarters 2901 West Truman Boulevard, P.O. Box 180, Jefferson City, Missouri 65102–0180 Telephone: 573–751–4115 ▲ www.MissouriConservation.org

SARA PARKER PAULEY, Director

June 18, 2018

Mr. Chris Wieberg Director, Water Protection Program Missouri Department of Natural Resources PO Box 176 Jefferson City, Missouri 65102

Dear Mr. Wieberg:

RE: Missouri Department of Conservation fish stocking information – EPA Nutrient Criteria

Thank you for your interest in the Missouri Department of Conservation's (Department) fish stocking records for major reservoirs in Missouri. As Fisheries Division Chief, I have been asked to respond and I am happy to do so.

The Department's mission is to protect and manage the fish, forest and wildlife resources of the state and to facilitate and provide opportunity for all citizens to use, enjoy, and learn about these resources. This mission is not only to benefit current Missourians, but future generations as well.

The Department effectively manages fish populations in Missouri's major reservoirs for a sport fish combination of black bass spp., bluegill, crappie and catfishes. Those populations are self-sustaining and managed through effective regulation and enforcement. Supplemental stocking for these primary species is not needed. Additionally, those reservoirs also have strong populations of non-sportfish that are selfsustaining and managed through effective regulation and enforcement. Again, supplemental stocking is not needed to maintain these populations.

Where appropriate, the Department stocks additional fish species to provide a "bonus" or "specialty" sport fishing opportunity. Species included in the bonus or specialty fishing opportunities include (but are not limited to) paddlefish, rainbow trout, brown trout, striped bass, hybrid striped bass, walleye, and muskellunge. I have enclosed a spreadsheet from calendar year 2017 for your convenience.

#### COMMISSION

DON C. BEDELL MARILYNN J. BRADFORD Sikeston Jefferson City Nutrient Criteria Implementation Plan Missouri Department of Natural Resources, Water Protection 182 DAVID W. MURPHY Columbia Mr. Chris Wieberg June 18, 2018 Page 2

The Department regularly monitors fish populations of primary sport fishes (black bass, crappie, catfishes) in major reservoirs (typically annually) to ensure we have appropriate regulations to manage these fish populations for today and into the future. We use various sampling techniques including electrofishing, netting, creel surveys and angler surveys to collect information related to fish populations and angler satisfaction over time.

If you have any questions or if I can provide any additional information, please contact me at (573) 522-4115, Ext. 3174 or by email at <u>brian.canaday@mdc.mo.gov</u>.

Sincerely,

BRIAN D. CANADAY FISHERIES DIVISION CHIEF

Enclosure

c: Director Sara Parker Pauley Deputy Director Mike Hubbard Deputy Director Aaron Jeffries Dru Buntin, Missouri Department of Natural Resources John Hoke, Missouri Department of Natural Resources

WS #6.

Location	County	Type of Stocking	Species; Size Stocked	Number Stocked	Source
Bull Shoals Lake - Bull Shoals Lake	Taney	MPS	striped bass; => 4"	16,109	MDC
Bull Shoals Lake - Bull Shoals Lake	Taney	MPS	walleye; < 4"	170,397	MDC
Bull Shoals Lake - Bull Shoals Lake	Taney	MPS	walleye; fry	250,000	MDC surplus
Lake of the Ozarks - Lake of the Ozarks	(none)	MPS	paddlefish; => 10"	3,600	MDC
Lake of the Ozarks - Lake of the Ozarks	(none)	MPS	striped bass; => 4"	7,508	MDC surplus
Lake of the Ozarks - Lake of the Ozarks	(none)	MPS	walleye; < 4"	214,860	MDC
Lake of the Ozarks - Lake of the Ozarks	(none)	MPS	walleye; fry	47,304	MDC surplus
Lake Taneycomo - Lake Taneycomo	Taney	MPS	brown trout; => 10"	10,001	MDC
Lake Taneycomo - Lake Taneycomo	Taney	MPS	brown trout; => 10"	10,017	MDC surplus
Lake Taneycomo - Lake Taneycomo	Taney	MPPO	rainbow trout; => 10"	381,972	MDC
Pomme de Terre Lake - Pomme de Terre Lake	Hickory	MPS	muskellunge; 10-12"	5,210	MDC
Pomme de Terre Lake - Pomme de Terre Lake	Hickory	MPS	walleye; < 4"	55,863	MDC surplus
Smithville Lake - Smithville Lake	Clay	MPS	walleye; < 4"	262,466	MDC
Stockton Lake - Stockton Lake	Cedar	MPS	walleye; < 4"	300,127	MDC
Table Rock Lake - Table Rock Lake	Taney	MPS	paddlefish; => 10"	2,451	MDC
Truman (Harry S) Lake - Truman (Harry S) Lake	Benton	MPS	paddlefish; => 10"	4,450	MDC
Truman (Harry S) Lake - Truman (Harry S) Lake	Benton	MPS	walleye; < 4"	188,022	MDC surplus

## Methodology for the Development of the 2020 Section 303(d) List in Missouri

Approved by the Clean Water Commission on July 16, 2018

Missouri Department of Natural Resources Division of Environmental Quality Water Protection Program



Nutrient Criteria Implementation Plan Missouri Department of Natural Resources, Water Protection | 185

39

## **Table of Contents**

I. Citation and Requirements	1
A. Citation of Section of Clean Water Act	1
B. U.S. EPA Guidance	1
II. The Methodology Document	7
A. Procedures and Methods Used to Collect Water Quality Data	7
Department Monitoring	7
Coordination with Other Monitoring Efforts in Missouri	7
• Existing Monitoring Networks and Programs	
• Identification of All Existing and Readily Available Water Quality Data Sources	11
Laboratory Analytical Support	
B. Sources of Water Quality Data	
C. Data Quality Considerations	
D. How Water Quality Data is Evaluated to Determine Whether or Not Waters are	
Impaired for 303(d) Listing Purposes	19
I. Physical, Chemical, Biological and Toxicity Data	19
II. Weight of Evidence Approach	
III. Biological Data	20
IV. Other Biological Data	
V. Toxic Chemicals	
VI. Duration of Assessment Period	41
VII. Assessment of Tier Three Waters	41
VIII. Other Types of Information	
E. Other 303(d) Listing Considerations	43
F. Prioritization of Waters for TMDL Development	
G. Resolution of Interstate/International Disagreements	
H. Statistical Considerations	
Description of Analytical Tools	
Rationale for the Burden-of-Proof	45
Level of Significance Used in Tests	46
• Use of the Binomial Probability Distribution for Interpretation of the 10 Percent	
Rule	46
Other Statistical Considerations	47
Examples of Statistical Procedures	47
I. References	49
Appendix A	51
Appendix B	54
Appendix C	58
Appendix D	
Appendix E	70

## I. Citation and Requirements

## A. Citation of Section of Clean Water Act

The Missouri Department of Natural Resources (MDNR) is responsible for the implementation and administration of the Federal Clean Water Act in Missouri. Pursuant to Section 40 CFR 130.7, States, Territories or authorized Tribes must submit biennially to the United States Environmental Protection Agency (EPA) a list of water quality limited (impaired) segments, pollutants causing impairment, and the priority ranking of waters targeted for Total Maximum Daily Load (TMDL) development. Federal regulation at 40 CFR 130.7 also requires States, Territories, and authorized Tribes to submit to EPA a written methodology document describing the State's approach in considering, and evaluating existing readily available data used to develop their 303(d) list of impaired water bodies. The listing methodology must be submitted to the EPA each year the Section 303(d) list is due. While EPA does not approve or disapprove the listing methodology, the agency considers the methodology during its review of the states 303(d) impaired waters list and the determination to list or not to list waters.

Following the Missouri Clean Water Commission approval, Section 303(d) is submitted to EPA. This fulfills Missouri's biennial submission requirements of an integrated report required under Sections 303(d), 305(b) and 314 of the Clean Water Act. In years when no integrated report is submitted, the department submits a copy of its statewide water quality assessment database to EPA.

## B. U.S. EPA Guidance

In 2001 the Office of General Counsel and the Office of Wetlands, Oceans, and Watersheds developed a recommended framework to assist EPA regions in the preparation of their approval letters for the States' 2002 Section 303(d) list submissions. This was to provide consistency in making approval decisions along with guidance for integrating the development and submission of the 2002 Section 305(b) water quality reports and Section 303(d) list of impaired waters¹.

The following sections provide an overview of EPA Integrated Report guidance documents from calendar year 2002 through 2015.

The 2002 Integrated Water Quality Monitoring and Assessment Report Guidance was the first document EPA provided to the States, Territories, and authorized Tribes with directions on how to integrate the development and submission of the 2002 305(b) water quality reports and Section 303(d) list of impaired waters.

The guidance recommended that States, Territories and authorized Tribes submit a combined integrated report that would satisfy the Clean Water Act requirements for both Section 305(b) water quality reports and Section 303(d) list. The 2002 Integrated Report was to include:

¹ Additional information can be obtained from EPA's website:

http://water.epa.gov/lawsregs/lawsguidance/cwa/tmdl/guidance.cfm).

- Status of and progress toward achieving comprehensive assessments of all waters;
- Water quality standard attainment status for every assessment unit;
- Basis for the water quality standard attainment determinations for every assessment unit;
- Additional monitoring that may be needed to determine water quality standard attainment status and, if necessary, to support development of total maximum daily loads (TMDLs) for each pollutant/assessment unit combination;
- Schedules for additional monitoring planned for assessment units;
- Pollutant/assessment unit combinations still requiring TMDLs; and
- TMDL development schedules reflecting the priority ranking of each pollutant/ assessment unit combination.

The 2002 EPA guidance described the requirements under Section 303(d) of the Clean Water Act where states were required to describe the methodology used to develop their 303(d) list. EPA's guidance recommended the states provide: (1) a description of the methodology used to develop Section 303(d) list; (2) a description of the data and information used to identify impaired and threatened waters; (3) a rationale for not using any readily available data and information; and (4) information on how interstate or international disagreements concerning the list are resolved. Lastly (5), it is recommended that "prior to submission of its Integrated Report, each state should provide the public the opportunity to review and comment on the methodology." In accordance with EPA guidance, the department reviews and updates the Listing Methodology Document (LMD) every two years. The LMD is made available to the public for review and comment at the same time the state's 303(d) impaired waters list is published for public comment. Following the public comment period, the department responds to public comments and provides EPA with a document summarizing all comments received.

In July 2003, EPA issued new guidance entitled "Guidance for 2004 Assessment, Listing and Reporting Requirements Pursuant to Sections 303(d) and 305(b) of the Clean Water Act." This guidance gave further recommendations about listing of 303(d) and other waters.

In July 2005, EPA published an amended version entitled "Guidance for 2006 Assessment, Listing and Reporting Requirements Pursuant to Sections 303(d), 305(b) and 314 of the Clean Water Act" (see Appendix A for Excerpt).

In October 2006, EPA issued a memorandum entitled "Information Concerning 2008 Clean Water Act Sections 303(d), 305(b) and 314 Integrated Reporting and Listing Decisions." This memorandum serves as EPA's guidance for the 2008 reporting cycle and beyond. This guidance recommended the use of a five-part categorization scheme and that each state provides a comprehensive description of the water quality standards attainment status of all segments within a state (reference Table 1 below). The guidance also defined a "segment" as being used synonymous with the term "assessment unit" used in previous Integrated Report Guidance. Overall, the selected segmentation approach should be consistent with the state's water quality standards and be capable of providing a spatial scale that is adequate to characterize the water quality standards attainment status for the segment.

It was in the 2006 guidance that EPA recommended all waters of the state be placed in one of five categories described below.

## Table 1. Placement of Waters within the Five Categories in the 2006² EPA Assessment, Listing and Reporting Guidance

	ting and Reporting Guidance		
Category 1	All designated uses are fully maintained. Data or other information supporting full use attainment for all designated uses must be consistent with the state's Listing Methodology Document (LMD). The department will place a water in Category 1 if the following conditions are met:		
	• The water has physical and chemical data (at a minimum, water temperature, pH, dissolved oxygen, ammonia, total cobalt, and total copper for streams, and total nitrogen, total phosphorus and secchi depth for lakes) and biological water quality data (at a minimum, <i>E. coli</i> or fecal coliform bacteria) that indicates attainment with water quality standards.		
	• The level of mercury in fish fillets or plugs used for human consumption is 0.3 mg/kg (wet weight) or less. Only samples of higher trophic level species (largemouth, smallmouth and spotted bass, sauger, walleye, northern pike, trout (rainbow and trout), striped bass, white bass, flathead catfish and blue catfish) will be used.		
	• The water is not rated as "threatened."		
Category 2	One or more designated uses are fully attained but at least one designated use has inadequate data or information to make a use attainment decision consistent with the state's LMD. The department will place a water in Category 2 if at least one of the following conditions are met:		
	• There is inadequate data for water temperature, pH, dissolved oxygen, ammonia, total cobalt or total copper in streams to assess attainment with water quality standards or inadequate data for total nitrogen, total phosphorus or secchi depth in lakes.		
	• There is inadequate <i>E. coli</i> or fecal coliform bacteria data to assess attainment of the whole body contact recreational use.		
	• There are insufficient fish fillet, tissue, or plug data available for mercury to assess attainment of the fish consumption use.		
	Category 2 waters will be placed in one of two sub-categories.		
	Category 2A: Waters will be placed in this category if available data, using best professional judgement, suggests compliance with numerical water quality criteria of Tables A or B in Missouri's Water Quality Standards (10 CSR 20-7.031) or other quantitative thresholds for determining use attainment.		

² http://www.epa.gov/sites/production/files/2015-10/documents/2006irg-report.pdf

	Category 2B: Waters will be placed in this category if the available data, using best professional judgment, suggests noncompliance with numeric water quality criteria of Tables A or B in Missouri's Water Quality Standards, or other quantitative thresholds for determining use attainment, and these data are insufficient to support a statistical test or to qualify as representative data. Category 2B waters will be given high priority for additional water quality monitoring.
Category 3	Water quality data are not adequate to assess any of the designated beneficial uses consistent with the LMD. The department will place a water in Category 3 if data are insufficient to support a statistical test or to qualify as representative data to assess any of the designated uses. Category 3 waters will be placed in one of two sub-categories.
	Category 3A. Waters will be placed in this category if available data, using best professional judgment, suggests compliance with numerical water quality criteria of Tables A or B in Missouri's Water Quality Standards (10 CSR 20-7.031) or other quantitative thresholds for determining use attainment. Category 3A waters will be tagged for additional water quality monitoring, but will be given lower priority than Category 3B waters.
	Category 3B. Waters will be placed in this category if the available data, using best professional judgment, suggest noncompliance with numerical water quality criteria of Tables A or B in Missouri's Water Quality Standards or other quantitative thresholds for determining use attainment. Category 3B waters will be given high priority for additional water quality monitoring.
Category 4	State water quality standards or other criteria, as per the requirements of Appendix B & C of this document, are not attained, but a Total Maximum Daily Load (TMDL) study is not required. Category 4 waters will be placed in one of three sub-categories.
	Category 4A. EPA has approved a TMDL study that addresses the impairment. The department will place a water in Category 4A if both the following conditions are met:
	• Any portion of the water is rated as being in non-attainment with state water quality standards or other criteria as explained in Appendix B & C of this document due to one or more discrete pollutants or discrete properties of the water ³ , and

 $^{^{3}}$  A discrete pollutant or a discrete property of water is defined here as a specific chemical or other attribute of the water (such as temperature, dissolved oxygen or pH) that causes beneficial use impairment and that can be measured quantitatively.

	• EPA has approved a TMDL for all pollutants that are causing non- attainment.
	Category 4B. Water pollution controls required by a local, state or federal authority, are expected to correct the impairment in a reasonable period of time. The department will place a water in Category 4B if <b>both</b> of the following conditions are met:
	• Any portion of the water is rated as being in non-attainment with state water quality standards or other criteria as explained in Appendix B & C of this document due to one or more discrete pollutants or discrete properties of water ³ , and
	• A water quality based permit that addresses the pollutant(s) causing the designated use, impairment has been issued, and compliance with the permit limits will eliminate the impairment; or other pollution control requirements have been made that are expected to adequately address the pollutant(s) causing the impairment. This may include implemented voluntary watershed control plans as noted in EPA's guidance document.
	Category 4C. Any portion of the water is rated as being in non-attainment with state water quality standards or other criteria as explained in Appendix B & C of this document, and a discrete pollutant(s) or other discrete property of the water ³ does not cause the impairment. Discrete pollutants may include specific chemical elements (e.g., lead, zinc), chemical compounds (e.g., ammonia, dieldrin, atrazine) or one of the following quantifiable physical, biological or bacteriological conditions: water temperature, percent of gas saturation, amount of dissolved oxygen, pH, deposited sediment, toxicity or counts of fecal coliform or <i>E. coli</i> bacteria.
Category 5	At least one discrete pollutant has caused non-attainment with state water quality standards or other criteria as explained in Appendix B & C of this document, and the water does not meet the qualifications for listing as either Categories 4A or 4B. Category 5 waters are those that are candidates for the state's 303(d) List ⁴ .
	If a designated use is not supported and the segment is impaired or threatened, the fact that a specific pollutant is not known does not provide a basis for excluding a segment from Category 5.
	Category 5. These segments must be listed as Category 5 unless the state can demonstrate that no discrete pollutant(s) causes or contributes to the impairment. Pollutants causing the impairment will be identified

 $^{^4}$  The proposed state 303(d) List is determined by the Missouri Clean Water Commission and the final list is determined by the U.S. Environmental Protection Agency.

	through the 303(d) assessment and listing process before a TMDL study is written. The TMDL should be written within the time frame preferred in EPA guidance for TMDL development, when it fits within the state's TMDL prioritization scheme.
	Category 5-alt. A water body assigned to 5-alt is an impaired water without a completed TMDL but assigned a low priority for TMDL development because an alternative restoration approach is being pursued. This also provides transparency to the public that a state is pursuing restoration activities in those waters to achieve water quality standards. The addition of this sub-category will facilitate tracking alternative restoration approaches in 303(d) listed waters in priority areas.
<u>Threatened</u> <u>Waters</u>	When a water is currently attaining all designated uses, but the data shows an inverse (time) trend in quality for one or more discrete water quality pollutants indicating the water will not continue to meet these uses before the next listing cycle. Such water will be considered "threatened." A threatened water will be treated as an impaired water and placed in the appropriate Category (4A, 4B, or 5).

In subsequent years, EPA has provided additional guidance, but only limited new supplemental information has been provided since the 2008 cycle.

In August 2015, the EPA provided draft guidance that would include a Category 5-alternative (5-alt) (reference Table 1 above). Additional information can be found at EPA's website: <a href="http://water.epa.gov/lawsregs/lawsguidance/cwa/tmdl/guidance.cfm">http://water.epa.gov/lawsregs/lawsguidance/cwa/tmdl/guidance.cfm</a>.

## **II.** The Methodology Document

## A. Procedures and Methods Used to Collect Water Quality Data

## • Department Monitoring

The major purposes of the department's water quality monitoring program are to:

- characterize background or reference water quality conditions;
- better understand daily, flow event and seasonal water quality variations and their underlying processes;
- characterize aquatic biological communities;
- assess trends in water quality;
- characterize local and regional effects of point and nonpoint sources pollutants on water quality;
- check for compliance with water quality standards and/or wastewater permit limits;
- support development of strategies, including Total Maximum Daily Loads, to return impaired waters to compliance with Water Quality Standards. All of these objectives are statewide in scope.
- <u>Coordination with Other Monitoring Efforts in Missouri</u>

To maximize efficiency, the department routinely coordinates its monitoring activities with other agencies to avoid overlap, and to give and receive feedback on monitoring design. Data from other sources are used for meeting the same objectives as department-sponsored monitoring. The data must fit the criteria described in the data quality considerations section of this document. The agencies most often involved are the U.S. Geological Survey, the U.S. Army Corps of Engineers, EPA, the Missouri Department of Conservation (MDC), and the Missouri Department of Health and Senior Services. The Department of Natural Resources also tracks the monitoring efforts of the National Park Service; the U.S. Forest Service; several of the state's larger cities; the states of Oklahoma, Arkansas, Kansas, Iowa, and Illinois; and graduate level research conducted at universities within Missouri. For those wastewater discharges where the department has required instream water quality monitoring, the department may also use monitoring data acquired by wastewater dischargers as a condition of discharge permits issued by the department. In 1995, the department also began using data collected by volunteers that have passed Volunteer Water Quality Monitoring Program Quality Assurance/Quality Control tests.

• Existing Monitoring Networks and Programs

The following is a list and a brief description of the kinds of water quality monitoring activities presently occurring in Missouri.

### 1. Fixed Station Network

- a) Objective: To better characterize background or reference water quality conditions, to better understand daily, flow events, and seasonal water quality variations and their underlying processes, to assess trends and to check for compliance with water quality standards.
- b) Design Methodology: Sites are chosen based on one of the following criteria:
  - Site is believed to have water quality representative of many neighboring streams of similar size due to similarity in watershed geology, hydrology and land use, and the absence of any impact from a significant point or discrete nonpoint water pollution source.
  - Site is downstream of a significant point source or discrete nonpoint source area.
- c) Number of Sites, Sampling Methods, Sampling Frequency, and Parameters:
  - MDNR/U.S. Geological Survey cooperative network: approximately 70 sites statewide, horizontally and vertically integrated grab samples, four to twelve times per year. Samples are analyzed for major ions (e.g. calcium, magnesium, sulfate, and chloride), nutrients (e.g. phosphorus and nitrogen), temperature, pH, dissolved oxygen, specific conductance, bacteria (e.g. *Escherichia coli* (*E. coli*) and fecal coliform) and flow on all visits, two to four times annually for suspended solids and heavy metals, and for pesticides six times annually at four sites.
  - MDNR/University of Missouri-Columbia's lake monitoring network. This program has monitored about 249 lakes since 1989. About 75 lakes are monitored each year. Each lake is usually sampled four times during the summer and about 12 are monitored spring through fall for nutrients, chlorophyll, turbidity and suspended solids.
  - Department routine monitoring of finished public drinking water supplies for bacteria and trace contaminants.
  - Routine bacterial monitoring for *E. coli* of swimming beaches at Missouri's state parks during the recreational season by the department's Missouri State Parks.
  - Monitoring of sediment quality by the department at approximately 10-12 discretionary sites annually. Sites are monitored for several heavy metals (e.g. arsenic, cadmium, copper, lead, mercury, nickel, zinc, etc.) and/or organic contaminants (e.g. polycyclic aromatic hydrocarbons, etc.).

#### 2. Special Water Quality Studies

a) Objective: Special water quality studies are used to characterize water quality effects from a specific pollutant source area.

WS #6.

- of concern based on previous water quality studies, effluent sampling and/or Missouri State Operating Permit applications. These studies employ multiple sampling stations downstream and upstream (if appropriate). If contaminants of concern have significant seasonal or daily variation, the sampling design must account for such variation.
- c) Number of Sites, Sampling Methods, Sampling Frequency and Parameters: The department conducts or contracts up to 10 to 15 special studies annually, as funding allows. Each study has multiple sampling sites. The number of sites, sampling frequency and parameters all vary greatly depending on the study. Intensive studies would also require multiple samples per site over a relatively short time frame.

## 3. Toxics Monitoring Program

The fixed station network and many of the department's intensive studies monitor for acute and chronic toxic chemicals⁵. In addition, major municipal and industrial dischargers must monitor for acute and chronic toxicity in their effluents as a condition of their Missouri State Operating Permit.

## 4. Biological Monitoring Program

- a) Objectives: The objectives of the Biological Monitoring programs are to develop numeric criteria describing "reference" aquatic macroinvertebrate and fish communities in Missouri's streams, to implement these criteria within state water quality standards and to maintain a statewide fish and aquatic macroinvertebrate monitoring program.
- b) Design Methodology: Development of biocriteria for fish and aquatic marcoinvertebrates⁶ involves identification of reference streams in each of Missouri's aquatic ecoregions and 17 ecological drainage units, respectively. It also includes intensive sampling of invertebrate and fish communities to quantify temporal and spatial variation in reference streams within ecoregions and variation among ecoregions, and the sampling of chemically and physically impaired streams to assess the aquatic community.
- c) Number of Sites, Sampling Methods, Sampling Frequency and Parameters: The department has conducted biological sampling of aquatic macroinvertebrates for many years. Since 1991, the department's aquatic macroinvertebrate monitoring program has consisted of standardized monitoring of approximately 45 to 55 sites twice annually. In addition, the MDC presently has a statewide fish and aquatic macroinvertebrate monitoring program, the Resource Assessment and Monitoring (RAM) Program, designed monitor and assess the health of Missouri's stream resources on a rotating basis. This program samples a minimum of 450 random and 30 reference sites every five years.

⁵ As defined in 10 CSR 20-7.031(1)

⁶ For additional information visit: http://dnr.mo.gov/env/esp/wqm/biologicalassessments.htm

## 5. Fish Tissue Monitoring Program

- a) Objective: Fish tissue monitoring addresses two objectives: (1) the assessment of ecological health or the health of aquatic biota (usually accomplished by monitoring whole fish samples); and (2) the assessment of human health risk based on the level of contamination of fish tissue plugs, or fillets.
- b) Design Methodology: Fish tissue monitoring sites are chosen based on one of the following criteria:
  - Site is believed to have water and sediment quality representative of many neighboring streams or lakes of similar size due to similarity in geology, hydrology and land use, and the absence of any known impact from a significant point source or discrete nonpoint water pollution source.
  - Site is downstream of a significant point source or discrete nonpoint source area.
  - Site has shown fish tissue contamination in the past.
- c) Number of Sites, Sampling Methods, Sampling Frequency and Parameters:

The department plans to maintain a fish tissue monitoring program to collect whole fish composite samples⁷ at approximately 13 fixed sites. In previous years, this was a cooperative effort between EPA and the department through EPAs Regional Ambient Fish Tissue (RAFT) Monitoring Program. Each site will be sampled once every two years. The preferred species for these sites are either Common Carp (*Cyprinus carpio*) or one of the Redhorse (a.k.a. sucker) species (*Moxostoma* sp.).

The department, EPA, and MDC also sample 40 to 50 discretionary sites annually for two fish fillet composite samples or fish tissue plug samples (mercury only) from fish of similar size and species. One sample is of a top carnivore such as Largemouth Bass (*Micropterus salmoides*), Smallmouth Bass (*Micropterus dolomieu*), Walleye (*Sander vitreus*), or Sauger (*Sander canadensis*). The other sample is for a species of a lower trophic level such as catfish, Common Carp or sucker species (Catostomidae). This program occasionally samples fish eggs for certain fish species at selected locations. Both of these monitoring programs analyze for several chlorinated hydrocarbon insecticides, PCBs, lead, cadmium, mercury, and fat content.

## 6. Volunteer Monitoring Program

Two major volunteer monitoring programs generate water quality data in Missouri. The data generated from these programs are used for statewide 305(b) reporting on general water quality health, used as a screening level tool to determine where additional monitoring is needed, or used to supplement other water quality data for watershed planning purposes.

• Lakes of Missouri Volunteer Program⁸. This cooperative program consists of persons from the department, the University of Missouri-Columbia, and volunteers who monitor

196

⁷ A composite sample is one in which several individual fish are combined to produce one sample.

⁸ For additional program information visit: http://www.lmvp.org/

approximately 137 sites on 66 lakes, including Lake Taneycomo, Table Rock Lake and several lakes in the Kansas City area. Lake volunteers are trained to collect samples for total phosphorus, total nitrogen, chlorophyll and inorganic suspended sediments. Data from this program is used by the university as part of a long-term study on the limnology of mid-western reservoirs.

• Volunteer Water Quality Monitoring Program. The Volunteer Water Quality Monitoring Program⁹ is an activity of the Missouri Stream Team Program, which is a cooperative project sponsored by the department, the Missouri Department of Conservation, and the Conservation Federation of Missouri. The program involves volunteers who monitor water quality of streams throughout Missouri. There are currently over 5,000 Stream Teams and more than 3,600 trained water quality monitors. Approximately 80,000 citizens are served each year through the program. Since the beginning of the Stream Team program, 494,232 volunteers have donated about 2 million hours valued at more than \$38 million to the State of Missouri.

After the Introductory class, many attend at least one more class of higher level training: Levels 1, 2, 3 and 4. Each level of training is a prerequisite for the next higher level, as is appropriate data submission. Data generated by Levels 2, 3, and 4 and the Cooperative Stream Investigation (CSI) Program volunteers represent increasingly higher quality assurance. For CSI projects, the volunteers have completed a quality assurance/quality control workshop, completed field evaluation, and/or have been trained to collect samples following department protocols. Upon completing Introductory and Level 1 and 2 training, volunteers will have received the basic level training to conduct visual stream surveys, stream discharge measurements, biological monitoring, and collect physical and chemical measurements for pH, conductivity, dissolved oxygen, nitrate, and turbidity.

Of those completing an Introductory course, about 35 percent proceed to Levels 1 and 2. The CSI Program uses trained volunteers to collect samples and transport them to laboratories approved by the department. Volunteers and department staff work together to develop a monitoring plan. All Level 2, 3, and 4 volunteers, as well as all CSI trained volunteers, are required to attend a validation session every 3 years to ensure equipment, reagents and methods meet program standards.

## • Identification of All Existing and Readily Available Water Quality Data Sources

## Data Solicitation Request

In the calendar year 2 years prior to the current listing cycle, the department sends out a request for all available water quality data (chemical and biological). The data solicitation requests water quality data for approximately a two year timeframe prior to and including the current calendar year (up to October 31st of the current year). The data solicitation request is sent to multiple agencies, neighboring states, and organizations. In addition, and

⁹ For additional program information visit: http://dnr.mo.gov/env/wpp/VWQM.htm

as part of the data solicitation process, the department queries available water quality data from national databases such as EPA's Storage and Retrieval (STORET)/Water Quality Exchange (WQX) data warehouse¹⁰, and the USGS Water Quality Portal¹¹.

The data must be spatially and temporally representative of the actual annual ambient conditions of the water body. Sample locations should be characteristic and representative of the main water mass or distinct hydrologic areas. With the exception of the data collected for those designated uses that require seasonally based data (e.g., whole body contact recreation, biological community data, and critical season dissolved oxygen), data should be distributed over at least three seasons, over two years, and should not be biased toward specific conditions (such as runoff, season, or hydrologic conditions).

Data meeting the following criteria will be accepted.

- Samples must be collected and analyzed under a Quality Assurance/Quality Control (QA/QC) protocol that follows the EPA requirements for quality assurance project plans.
- [°] Samples must be analyzed following protocols that are consistent with the EPA or Standard Method procedures.
- [°] All data submitted must be accompanied by a copy of the organization's QA/QC protocol and standard operating procedures.
- [°] All data must be reported in standard units as recommended in the relevant approved methods.
- [°] All data must be accompanied by precise sample location(s), preferably in either decimal degrees or Universal Transverse Mercator (UTM).
- ° All data must be received in a Microsoft Excel or compatible format.
- ° All data must have been collected within the requested period of record.

All readily available and acceptable data are uploaded into the department's Water Quality Assessment Database¹², where the data undergoes quality control checks prior to 303(d) or 305(b) assessment processes.

#### <u>Laboratory Analytical Support</u>

Laboratories used:

- [°] Department/U.S. Geological Survey Cooperative Fixed Station Network: U.S. Geological Survey Lab, Denver, Colorado
- ° Intensive Surveys: Varies, many are done by the department's Environmental Services Program
- ° Toxicity Testing of Effluents: Many commercial laboratories

¹⁰ http://www.epa.gov/storet/dw_home.html

¹¹ http://www.waterqualitydata.us/

¹² http://dnr.mo.gov/mocwis_public/wqa/water bodySearch.do

- [°] Biological Criteria for Aquatic Macroinvertebrates: department's Environmental Services Program and Missouri Department of Conservation
- ° Fish Tissue: EPA Region VII Laboratory, Kansas City, Kansas, and miscellaneous contract laboratories (Missouri Department of Conservation or U.S. Geological Survey's Columbia Environmental Research Center)
- ° Missouri State Operating Permit: Self-monitoring or commercial laboratories
- ² Department's Public Drinking Water Monitoring: department's Environmental Services Program and commercial laboratories¹³
- ° Other water quality studies: Many commercial laboratories

## **B.** Sources of Water Quality Data

The following data sources are used by the department to aid in the compilation of the state's integrated report (previously the 305(b) report). Where quality assurance programs are deemed acceptable, additional sources would also be used to develop the state's Section 303(d) list. These sources presently include, but are not limited to:

- 1. Fixed station water quality and sediment data collected and analyzed by the department's Environmental Services Program personnel.
- 2. Fixed station water quality data collected by the U.S. Geological Survey under contractual agreements with the department.
- 3. Fixed station water quality data collected by the U.S. Geological Survey under contractual agreements to agencies or organizations other than the department.
- 4. Fixed station water quality, sediment quality, and aquatic biological information collected by the U.S. Geological Survey under their National Stream Quality Accounting Network and the National Water Quality Assessment Monitoring Programs.
- 5. Fixed station raw water quality data collected by the Kansas City Water Services Department, the St. Louis City Water Company, the Missouri American Water Company (formerly St. Louis County Water Company), Springfield City Utilities, and Springfield's Department of Public Works.
- 6. Fixed station water quality data collected by the U.S. Army Corps of Engineers. The Kansas City, St. Louis, and Little Rock Corps Districts have monitoring programs for Corps-operated reservoirs in Missouri.
- 7. Fixed station water quality data collected by the Arkansas Department of Environmental Quality, the Kansas Department of Health and Environment, the Iowa Department of Natural Resources, and the Illinois Environmental Protection Agency.
- 8. Fixed station water quality monitoring by corporations.
- 9. Annual fish tissue monitoring programs by EPA/Department RAFT Monitoring Program and MDC.
- 10. Special water quality surveys conducted by the department. Most of these surveys are

199

¹³ For additional information visit: http://dnr.mo.gov/env/wpp/labs/

focused on the water quality impacts of specific point source wastewater discharges. Some surveys are of well-delimited nonpoint sources such as abandoned mined lands. These surveys often include physical habitat evaluation and monitoring of aquatic macroinvertebrates as well as water chemistry monitoring.

- 11. Special water quality surveys conducted by U.S. Geological Survey, including but not limited to:
  - a) Geology, hydrology and water quality of various hazardous waste sites,
  - b) Geology, hydrology and water quality of various abandoned mining areas,
  - c) Hydrology and water quality of urban nonpoint source runoff in metropolitan areas of Missouri (e.g. St. Louis, Kansas City, and Springfield), and
  - d) Bacterial and nutrient contamination of streams in southern Missouri.
- 12. Special water quality studies by other agencies such as MDC, the U.S. Public Health Service, and the Missouri Department of Health and Senior Services.
- 13. Monitoring of fish occurrence and distribution by MDC.
- 14. Fish Kill and Water Pollution Investigations Reports published by MDC.
- 15. Selected graduate research projects pertaining to water quality and/or aquatic biology.
- 16. Water quality, sediment, and aquatic biological data collected by the department, EPA or their contractors at hazardous waste sites in Missouri.
- 17. Self-monitoring of receiving streams by cities, sewer districts and industries, or contractors on their behalf, for those discharges that require this kind of monitoring. This monitoring includes chemical and sometimes toxicity monitoring of some of the larger wastewater discharges, particularly those that discharge to smaller streams and have the greatest potential to affect instream water quality.
- 18. Compliance monitoring of receiving waters by the department and EPA. This can include chemical and toxicity monitoring.
- 19. Bacterial monitoring of streams and lakes by county health departments, community lake associations, and other organizations using acceptable analytical methods.
- 20. Other monitoring activities done under a quality assurance project plan approved by the department.
- 21. Fixed station water quality and aquatic macroinvertebrate monitoring by volunteers who have successfully completed the Volunteer Water Quality Monitoring Program Level 2 workshop. Data collected by volunteers who have successfully completed a training Level 2 workshop is considered to be Data Code One. Data generated from Volunteer Training Levels 2, 3 and 4 are considered "screening" level data and can be useful in providing an indication of a water quality problem. For this reason, the data are eligible for use in distinguishing between waters in Categories 2A and 2B or Categories 3A and 3B. Most of this data are not used to place waters in main Categories (1, 2, 3, 4, and 5) because analytical procedures do not use EPA or Standard Methods or other department approved methods. Data from volunteers who have not yet completed a Level 2 training

workshop do not have sufficient quality assurance to be used for assessment. Data generated by volunteers while participating in the department's Cooperative Site Investigation Program (Section II C1) or other volunteer data that otherwise meets the quality assurance outlined in Section II C2 may be used in Section 303(d) assessment.

The following data sources (22-23) **cannot** be used to rate a water as impaired (Categories 4A, 4B, 4C or 5); however, these data sources may be used to direct additional monitoring that would allow a water quality assessment for Section 303(d) listing.

- 22. Fish Management Basin Plans published by MDC.
- 23. Fish Consumption Advisories published annually by the Missouri Department of Health and Senior Services. Note: the department may use data from data source listed as Number 9 above, to list individual waters as impaired due to contaminated fish tissue.

As previously stated, the department will review all data of acceptable quality that are submitted to the department prior to the first public notice of the draft 303(d) list. However, the department will reserve the right to review and use data of acceptable quality submitted after this date if the data results in a change to the assessment outcome of the water.

## C. Data Quality Considerations

• DNR Quality Assurance/Quality Control Program

The department and EPA Region VII have completed a Quality Management Plan. All environmental data generated directly by the department, or through contracts funded by the department, or EPA require a Quality Assurance Project Plan¹⁴. The agency or organization responsible for collecting and/or analyzing environmental data must write and adhere to a Ouality Assurance Project Plan approved through the department's Quality Management Plan. Any environmental data generated via a monitoring plan with a department approved Quality Assurance Project Plan are considered suitable for use in water quality assessment and the 303(d) listing. This includes data generated by volunteers participating in the department's CSI Program. Under this program, the department's Environmental Services Program will audit select laboratories. Laboratories that pass this audit will be approved for the CSI Program. Individual volunteers who collect field samples and deliver them to an approved laboratory must first successfully complete department training on how to properly collect and handle environmental samples. The types of information that will allow the department to make a judgment on the acceptability of a quality assurance program are: (1) a description of the training, and work experience of the persons involved in the program, (2) a description of the field meters and maintenance and calibration procedures, (3) a description of sample collection and handling procedures, and (4) a description of all analytical methods used in the laboratory for analysis.

¹⁴ For additional information visit: http://www.epa.gov/quality/qapps.html

<u>Other Quality Assurance/Quality Control Programs</u>

Data generated in the absence of a department-approved Quality Assurance Project Plan may be used to assess a water body if the department determines that the data are adequate after reviewing and accepting the quality assurance procedures plan used by the data generator. This review would include: (1) names of all persons involved in the monitoring program, their duties, and a description of their training and work related experience, (2) all written procedures, Standard Operating Procedures, or Quality Assurance Project Plans pertaining to this monitoring effort, (3) a description of all field methods used, brand names and model numbers of any equipment, and a description of calibration and maintenance procedures, and (4) a description of laboratory analytical methods. This review may also include an audit by the department's Environmental Services Program.

<u>Data Qualifiers</u>

Data qualifiers will be handled in different ways depending upon the qualifier, the analytical detection limit, and the numeric WQS.

- Less Than Qualifier "<" For this qualifier the department will use half of the reported less than value. Unless circumstances cause issues with assessment. Examples of this include but are not limited to:
  - Less than values for bacteria. Since we calculate a geometric mean any value less than 1.0 could cause the data to be skewed if using the geometric mean calculation method of multiplying the values then dividing by the nth root.
  - Less than values below the criterion but still close to the criterion, less than
    values that are above the criterion. In these cases the department will not use
    the data for assessments.
- Non-detection Qualifier "ND" The department treats these same as less than ("<") qualifiers, with the exception that a value is not reported. For these cases the department will use the method detection limit as the reported less than value.</li>
- Greater Than Qualifier ">" The department will only consider data with these qualifiers for assessments when it pertains to bacteria. In the cases of bacteria data the reported greater than (">") value is doubled then used in the assessment calculation. In circumstances where this practice is the sole reason for impairment then the greater than value(s) will be used at the reported value (i.e. not doubled) in the assessment calculation.
- Estimated Values "E" These values are usually characterized as being above the laboratory quantification limit but below the laboratory reporting limit and are thus reported as estimated ("E"). Sometimes bacteria values are reported as estimated ("E") at the high end and due to the particular method used for analysis this usually means a dilution of the sample was used because the true bacteria count is higher than the method reporting maximum. The department will not use estimated ("E") values if the value reported is near the criterion. If the value is well above or well below the criterion then it will be used in assessments.

## • Data Age

For assessing present conditions, more recent data are preferable; however, older data may be used to assess present conditions if the data remains representative of present conditions.

- If the department uses data older than seven years to make a Section 303(d) list decision a written justification for the use of such data will be provided.
- If a water body has not been listed previously and <u>all data indicating an impairment</u> is older than 7 years, then the water body shall be placed into Category 2B or 3B and prioritized for future sampling.
- A second consideration is the age of the data relative to significant events that may have an effect on water quality. Data collected prior to the initiation, closure, or significant change in a wastewater discharge, or prior to a large spill event or the reclamation of a mining or hazardous waste site, for example, may not be representative of present conditions. Such data would not be used to assess present conditions even if it was less than seven years old. Such "pre-event" data can be used to determine changes in water quality before and after the event or to show water quality trends.
- Data Type, Amount and Information Content

EPA recommends establishing a series of data codes, and rating data quality by the kind and amount of data present at a particular location ( $\underline{EPA} \ \underline{1997}^{15}$ ). The codes are singledigit numbers from one to four, indicating the relative degree of assurance the user has in the value of a particular environmental data set. Data Code One indicates the least assurance or the least number of samples or analytes and Data Code Four the greatest. Based on EPA's guidance, the department uses the following rules to assign code numbers to data.

- Data Code¹⁶ One: All data not meeting the requirements of the other data codes.
- Data Code Two: Chemical data collected quarterly to bimonthly for at least three years, or intensive studies that monitor several nearby sites repeatedly over short periods of time, or at least three composite or plug fish tissue samples per water body, or at least five bacterial samples collected during the recreational season of one calendar year.

¹⁵ Guidelines for the Preparation of the Comprehensive State Water Quality Assessments (305b) and Electronic Updates, 1997. (http://water.epa.gov/type/watersheds/monitoring/repguid.cfm)

¹⁶ Data Code One is equivalent to data water quality assurance Level One in 10 CSR 20-7.050 General Methodology for Development of Impaired Waters List, subsection (2)(C), Data Code Two is equivalent to Level 2, etc.

- Data Code Three: Chemical data collected at least monthly for more than three years on a variety of water quality constituents including heavy metals and pesticides; or a minimum of one quantitative biological monitoring study of at least one aquatic assemblage (fish, macroinvertebrates, or algae) at multiple sites, multiple seasons (spring and fall), or multiple samples at a single site when data from that site is supported by biological monitoring at an appropriate control site.
- Data Code Four: Chemical data collected at least monthly for more than three years that provides data on a variety of water quality constituents including heavy metals and pesticides, and including chemical sampling of sediments and fish tissue; or a minimum of one quantitative biological monitoring study of at least two aquatic assemblages (fish, macroinvertebrates, or algae) at multiple sites.

In Missouri, the primary purpose of Data Code One data is to provide a rapid and inexpensive method of screening large numbers of waters for obvious water quality problems and to determine where more intensive monitoring is needed. In the preparation of the state's Integrated Report, data from all four data quality levels are used. Most of the data is of Data Code One quality, and without Data Code One data, the department would not be able to assess a majority of the state's waters.

In general, when selecting water bodies for the Missouri 303(d) List, only Data Code Two or higher are used, unless the problem can be accurately characterized by Data Code One data.¹⁷ The reason is that Data Code Two data provides a higher level of assurance that a Water Quality Standard is not actually being attained and that a TMDL study is necessary. All water bodies placed in Categories 2 or 3 receive high priority for additional monitoring so that data quality is upgraded to at least Data Code Two. Category 2B and 3B waters will be given higher priority than Categories 2A and 3A.

EPA suggests that states use these codes as a way of describing the type of information collected, the frequency of collection, spatial/temporal coverage, and quality. Missouri has followed this guidance for the most part, but where Missouri differs is that we use the data codes to explain the type of information collected, the frequency it is collected, and the spatial/temporal coverage. For data quality the department reviews the data on a project specific basis and looks at the laboratory analysis and collection methods used to generate the data. If the data is of acceptable quality we mark the project and all of its underlying data as QA acceptable. We should only be using QA acceptable data for assessments, unless that data provides additional corroboration of impairment or attainment status.

204

¹⁷ When a listing, amendment or delisting of a 303(d) water is made with only Data Code One data, a document will be prepared that includes a display of all data and a presentation of all statistical tests or other evaluative techniques that documents the scientific defensibility of the data. This requirement applies to all Data Code One data identified in Appendix B of this document.

## • Dissolved Oxygen and Flow

Dissolved oxygen in streams is highly dependent on flow. For the assessment of streams dissolved oxygen measurements must be accompanied by a flow measurement taken on the same day as the dissolved oxygen measurement. The dissolved oxygen measurements must also be collected from the flowing portion of the stream and must not be influenced by flooding or backwater conditions.

#### • pH Data Considerations

The criterion for pH will be clarified at some point in the Missouri WQS as a chronic criterion. Assessment will be handled in the following ways:

- Continuous Sampling (i.e. time series or sonde data collection)
  - Data collected in a time series fashion will be looked at on a 4 day period. If an entire 4 day period is outside of the 6.5 9.0 criterion range that will count as a chronic toxicity event. More than one of these events will constitute an impairment listing of the stream.
- Grab Samples
  - Data collected as grab samples will be treated as is and the binomial probability calculation will be used for assessment. See Appendix D for further information.

## **D.** How Water Quality Data is Evaluated to Determine Whether or Not Waters are Impaired for 303(d) Listing Purposes

I. Physical, Chemical, Biological and Toxicity Data

During each reporting cycle, the department and stakeholders review and revise the guidelines for determining water quality impairment. The guidelines shown in Appendix B & C provide the general rules of data use and assessment and Appendix D provides details about the specific analytical procedure used. In addition, if trend analysis indicates that presently unimpaired waters will become impaired prior to the next listing cycle, these "threatened waters" will be judged as impaired. Where antidegradation provisions in Missouri's Water Quality Standards apply, those provisions shall be upheld. The numerical criteria included in Appendix B have been adopted into the state water quality standards, 10 CSR 20-7.031, and are used, as described in Appendix B to make use attainment decisions.

#### II. Weight of Evidence Approach

When evaluating narrative criteria described in the state water quality standards, 10 CSR 20-7.031, the department will use a weight of evidence analysis for assessing numerical translators that have not been adopted into state water quality standards (see Appendix C). Under the weight of evidence approach, all available information is examined and the greatest weight is given to data providing the "best supporting evidence" for an attainment decision. Determination of "best supporting evidence" will be made using best professional judgment, considering factors such as data quality, and site-specific

environmental conditions. For those analytes with numeric thresholds, the threshold values given in Appendix C will trigger a weight of evidence analysis to determine the existence or likelihood of a use impairment and the appropriateness of proposing a 303(d) listing based on narrative criteria. This weight of evidence analysis will include the use of other types of environmental data when it is available or collection of additional data to make the most informed use attainment decision. Examples of other relevant environmental data might include physical or chemical data, biological data on fish [Fish Index of Biotic Integrity (fIBI)] or aquatic macroinvertebrate [Macroinvertebrate Stream Condition Index (MSCI)] scores, fish tissue, or toxicity testing of water or sediments.

Biological data will be given greater weight in a weight of evidence analysis for making attainment decisions for aquatic life use and subsequent Section 303(d) listings. Whether or not numeric translators of biological criteria are met is a strong indicator for the attainment of aquatic life use. Moreover, the department retains a high degree of confidence in an attainment decision based on biological data that is representative of water quality condition.

When the weight of evidence analysis suggests, but does not provide strong scientifically valid evidence of impairment, the department will place the water body in question in Categories 2B or 3B. The department will produce a document showing all relevant data and the rationale for the attainment decision. All such documents will be available to the public at the time of the first public notice of the proposed 303(d) list. A final recommendation on the listing of a water body based on narrative criteria will only be made after full consideration of all comments on the proposed list.

#### III. Biological Data

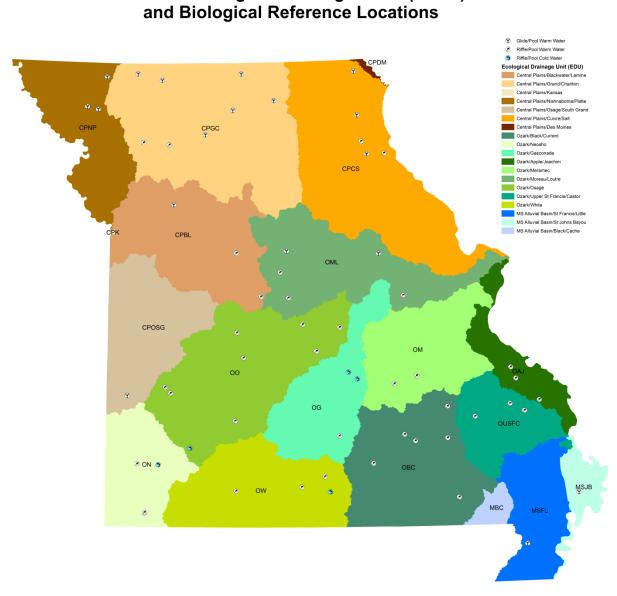
Methods for assessing biological data typically receive considerable attention during the public comment period of development of the Listing Methodology Document. Currently, a defined set of biocriteria are used to evaluate biological data for assessing compliance with water quality standards. These biological criteria contain numeric thresholds, that when exceeded relative to prescribed assessment methods, serve as a basis for identifying candidate waters for Section 303(d) listing. Biocriteria are based on three types of biological data, including: (1) aquatic macroinvertebrate community data; (2) fish community data; and, (3) a catch-all class referred to as "other biological data."

In general, for interpretation of macroinvertebrate data where Stream Habitat Assessment Project Procedure (SHAPP) (MDNR 2016b) assessment scores indicate habitat is less than 75 percent of reference or appropriate control stream scores, and in the absence of other data indicating impairment by a discrete pollutant, a water body judged to be impaired will be placed in Category 4C. When interpreting fish community data, a provisional multi-metric habitat index called the QCPH1 index is used to identify stream habitat in poor condition. The QCPH1 index separates adequate habitat from poor habitat using a 0.39 threshold value; whereby, QCPH1 scores < 0.39 indicate stream habitat is of poor quality, and scores greater than 0.39 indicate available stream habitat is adequate. In the absence of other data indicating impairment by a discrete pollutant, impaired fish communities with poor habitat will be placed in Category 4C. Additional information about QCPH1 is provided in the *Considerations for the Influence of Habitat Quality and Sample Representativeness* section.

The sections below describe the methods used to evaluate the three types of biological data (macroinvertebrate community, fish community, and other biological data), along with background information on the development and scoring of biological criteria, procedures for assessing biological data, methods used to ensure sample representativeness, and additional information used to aid in assessing biological data such as the weight of evidence approach.

### Aquatic Macroinvertebrate Community Data

The department conducts aquatic macroinvertebrate assessments to determine macroinvertebrate community health as a function of water quality and habitat. The health of a macroinvertebrate community is directly related to water quality and habitat. Almost all macroinvertebrate evaluation consists of comparing the health of the community of the "target" to healthy macroinvertebrate communities from reference streams of the same general size and usually in the same Ecological Drainage Unit (EDU).


The department's approach to monitoring and evaluating aquatic macroinvertebrates is largely based on *Biological Criteria for Wadeable/Perennial Streams of Missouri* (MDNR 2002). This document provides the framework for numerical biological criteria (biocriteria) relevant to the protection of aquatic life use for wadeable streams in the state. Biocriteria were developed using wadeable reference streams that occur in specific EDUs as mapped by the Missouri Resource Assessment Partnership (reference Figure 1 below). For macroinvertebrates, the numerical biocriterion translator is expressed as a multiple metric index referred to as the MSCI. The MSCI includes four metrics: Taxa Richness (TR); Ephemeroptera, Plecoptera, and Trichoptera Taxa (EPTT); Biotic Index (BI); and the Shannon Diversity Index (SDI). These metrics are considered indicators of stream health, and change predictably in response to the environmental condition of a stream.

Metric values are determined directly from macroinvertebrate sampling. To calculate the MSCI, each metric is normalized to unitless values of 5, 3, or 1, which are then added together for a total possible score of 20. MSCI scores are divided into three levels of stream condition:

- Fully Biologically Supporting (16-20),
- Partially Biologically Supporting (10-14), and
- Non-Biologically Supporting (4-8).

Partially and Non-Biologically Supporting streams may be considered impaired and are candidates for Section 303(d) listing.

Missouri Ecological Drainage Units (EDUs)



#### Figure 1: Missouri Ecological Drainage Units (EDUs) and Biological Reference Locations

Unitless metric values (5, 3, or 1) were developed from the lower quartile of the distribution of each metric as calculated from reference streams for each EDU. The lower quartile (25th percentile) of each metric equates to the minimum value still representative of unimpaired conditions. In operational assessments, metric values below

the lower quartile of reference conditions are typically judged as impaired (United States Environmental Protection Agency 1996, Ohio Environmental Protection Agency 1990, Barbour *et al.* 1996). Moreover, using the 25th percentile of reference conditions for each metric as a standard for impairment allows natural variability to be filtered out. For metrics with values that decrease with increasing impairment (TR, EPTT, SDI), any value above the lower quartile of the reference distribution receives a score of five. For the BI, whose value increases with increasing impairment, any value below the upper quartile (75th percentile) of the reference distribution receives a score of five. The remainder of each metric's potential quartile range below the lower quartile is bisected, and scored either a three or a one. If the metric value is less than or equal to the quartile value and greater than the bisection value it is scored a three. If the metric value is less than or equal to the bisection value it is scored a one.

MSCI scores meeting data quality considerations may be assessed for the protection of aquatic life using the following procedures.

## **Determining Full Attainment of Aquatic Life Use:**

- For seven or fewer samples, 75% of the MSCI scores must be 16 or greater. Fauna achieving these scores are considered to be very similar to biocriteria reference streams.
- For eight or more samples, results must be statistically similar to representative reference or control streams.

## **Determining Non-Attainment of Aquatic Life Use:**

- For seven or fewer samples, 75% of the MSCI scores must be 14 or lower. Fauna achieving these scores are considered to be substantially different from biocriteria reference streams.
- For eight or more samples, results must be statistically dissimilar to representative reference or control streams.

# Data will be judged inconclusive when outcomes do not meet requirements for decisions of full or non-attainment.

As noted, when eight or more samples are available, results must be statistically similar or dissimilar to reference or control conditions in order to make an attainment decision. To accomplish this, a binomial probability with an appropriate level of significance ( $\alpha$ =alpha), is calculated based on the null hypothesis that the test stream would have a similar percentage of MSCI scores that are 16 or greater as reference streams. The significance level is set at  $\alpha$ =0.1, meaning if the p-value of the hypothesis test is less than  $\alpha$ , the hypothesis is considered statistically significant. The significance level of  $\alpha$  is in fact the probability of making a wrong decision and committing a Type I error (rejecting a true null hypothesis). When the Type I error rate is less than  $\alpha$ =0.1, the null hypothesis is accepted. Inversely, when the Type I error rate is greater than  $\alpha$ =0.1, the null hypothesis is accepted. For comparing samples from a test stream to samples collected from reference streams

in the same EDU, the percentage of samples from reference streams scoring 16 or greater is used to determine the probability of "success" and "failure" in the binomial probability equation. For example, if 84% of the reference stream MSCI scores in a particular EDU are 16 or greater, then 0.84 would be used as the probability of success and 0.16 would be used as the probability of failure. Note that Appendix D states to "rate a stream as impaired if biological criteria reference stream frequency of fully biologically supporting scores is greater than five percent more than the test stream," thus, a value of 0.79 (0.84 - 0.05) would actually be used as the probability of success in the binomial distribution equation.

## **Binomial Probability Example:**

Reference streams from the Ozark/Gasconade EDU classified as riffle/pool stream types with warm water temperature regimes produce fully biologically supporting streams 85.7% of the time. In the test stream of interest, six out of ten samples resulted in MSCI scores of 16 or more. Calculate the Type I error rate for the probability of getting six or fewer fully biologically supporting scores in ten samples.

The binomial probability formula may be summarized as:

$$p^{n} + (n!/X!(n-X)!*p^{n}q^{n-x}) = 1$$

Where,

Sample Size (n) = 10 Number of Successes (X) = 6 Probability of Success (p) = 0.857 - 0.05 = 0.807Probability of Failure (q) = 0.193

Excel has the BINOM.DIST function that will perform this calculation.

=BINOM.DIST(number_s,trials,probability_s,cumulative)
=BINOM.DIST(6,10,0.807,TRUE)

Using Excel's Binomial Function			
Probability of Success	0.807		
Sample Size	10		
# of Successes	6		
Type 1 Error Rate	0.109		

Since 0.109 is greater than the test significance level (minimum allowable Type I error rate) of  $\alpha$ = 0.1, we accept the null hypothesis that the test stream has the same percent of fully biologically supporting scores as the same type of reference streams

from the Ozark/Gasconade EDU. Thus, this test stream would be judged as unimpaired.

If under the same scenario, there were only 5 samples from the test stream with MSCI scores of 16 or greater, the Type I error rate would change to 0.028, and since this value is less than the significance level of  $\alpha$ =0.1, the stream would be judged as impaired.

Within each EDU, MSCI scores are categorized by sampling regime (Glide/Pool vs. Riffle/Pool) and temperature regime (warm water vs. cold water). The percentage of fully biologically supporting scores for the Mississippi River Alluvial Basin/Black/Cache EDU is not available due to the lack of reference sites in this region. Percentages of fully biologically supporting samples per EDU is not included here, but can be made available upon request. The percentage of reference streams per EDU that are fully biologically supporting may change periodically as additional macroinvertebrate samples are collected and processed from reference samples within an EDU.

### Sample Representativeness

The departments field and laboratory methods used to collect and process macroinvertebrate samples are contained in the document *Semi-Quantitative Macroinvertebrate Stream Bioassessment* (MDNR 2015). Macroinvertebrates are identified to levels following standard operating procedures contained in *Taxonomic Levels for Macroinvertebrate Identifications* (MDNR 2016b). Macroinvertebrate monitoring is accompanied by physical habitat evaluations as described in the document *Stream Habitat Assessment* (MDNR 2016a). For the assessment of macroinvertebrate samples, available information must meet data code levels three and four as described in Section II.C of this LMD. Data coded as levels three and four represent environmental data providing the greatest degree of assurance. Thus, at a minimum, macroinvertebrate assessments include multiple samples from a single site, or samples from multiple sites within a single reach.

It is important to avoid situations where poor or inadequate habitat prohibits macroinvertebrate communities from being assessed as fully biologically supporting. Therefore, when assessing macroinvertebrate samples, the quality of available habitat must be similar to that of reference streams within the appropriate EDU. The department's policy for addressing this concern has been to exclude MSCI scores from an assessment when accompanying habitat scores are less than 75 percent of the mean habitat scores from reference streams of the appropriate EDU. The following procedures outline the department's method for assessing macroinvertebrate communities from sites with poor or inadequate habitat.

#### Assessing Macroinvertebrate Communities from Poor/Inadequate Habitat:

• If less than half the macroinvertebrate samples in an assessed stream segment have habitat scores less than 75 percent of the mean score for reference streams in that EDU, any sample that scores less than 16 and has a habitat score less than 75

211

percent of the mean reference stream score for that EDU, is excluded from the assessment process.

- If at least half the macroinvertebrate samples in an assessed stream segment have habitat scores less than 75 percent of the mean score for reference streams in that EDU and the assessment results in a judgment that the macroinvertebrate community is impaired, the assessed segment will be placed in Category 4C impairment due to poor aquatic habitat.
  - If one portion of the assessment reach contains two or more samples with habitat scores less than 75 percent of reference streams from that EDU while the remaining portion does not, the portion of the stream with poor habitat scores could be separately assessed as a category 4C stream permitting low MSCI scores.

Macroinvertebrate sampling methods vary by stream type. One method is used in riffle/pool predominant streams, and the other method is for glide/pool predominant streams. For each stream type, macroinvertebrate sampling targets three habitats.

- For riffle/pool streams, the three habitats sampled are flowing water over coarse substrate, non-flowing water over depositional substrate, and rootmat substrate.
- For glide/pool streams, the three habitats sampled are non-flowing water over depositional substrate, large woody debris substrate, and rootmat substrate.

In some instances, one or more of the habitats sampled can be limited or missing from a stream reach, which may affect an MSCI score. Macroinvertebrate samples based on only two habitats may have an MSCI score equal to or greater than 16, but it is also possible that a missing habitat may lead to a decreased MSCI score. Although MDNR stream habitat assessment procedures take into account a number of physical habitat parameters from the sample reach (for example, riparian vegetation width, channel alteration, bank stability, bank vegetation protection, etc.), they do not exclusively measure the quality or quantity of the three predominant habitats from each stream. When evaluating potentially impaired macroinvertebrate communities, the number of habitats sampled, in addition to the stream habitat assessment score, will be considered to ensure MSCI scores less than 16 are properly attributed to poor water quality or poor/inadequate habitat condition.

Biologists responsible for conducting biological assessments will determine the extent to which habitat availability is responsible for a non-supporting (<16) MSCI score. If it is apparent that a non-supporting MSCI score was due to limited habitat, these effects will be stated in the biological assessment report. This limitation will then be considered when deciding which Listing Methodology category is most appropriate for an individual stream. This procedure, as part of an MDNR biological assessment, will aid in determining whether impaired macroinvertebrate samples have MSCI scores based on poor water quality conditions versus habitat limitations.

WS #6.

To ensure assessments are based on representative macroinvertebrate samples, samples collected during or shortly after prolonged drought, shortly after major flood events, or any other conditions that fall outside the range of environmental conditions under which reference streams in the EDU were sampled, will not be used to make an attainment decision for a Section 303(d) listing or any other water quality assessment purposes. Sample "representativeness" is judged by Water Protection Program (WPP) staff after reading the biomonitoring report for that stream, and if needed, consultation with biologists from the department's Environmental Services Program. Regarding smaller deviations from "normal" conditions, roughly 20 percent of reference samples failing to meet a fully biologically supporting MSCI score were collected following weather/climate extremes; as a result, biological criteria for a given EDU are inclusive of samples collected during not only ideal macroinvertebrate-rearing conditions, but also during the weather extremes that Missouri experiences.

### Assessing Small Streams

Occasionally, macroinvertebrate monitoring is needed to assess streams smaller than the typical wadeable/perennial reference streams listed in Table I of Missouri's Water Quality Standards. Smaller streams may include Class C streams (streams that may cease flow in dry periods but maintain permanent pools which support aquatic life) or those that are unclassified. Assessing small streams involves comparing test stream and candidate reference stream MSCI scores first, to Wadeable/Perennial Reference Stream (WPRS) criteria, and second to each other.

In MDNR's Biological Criteria Database, there are 16 candidate reference streams labeled as Class P, 23 labeled as Class C, and 24 labeled as Class U. In previous work by MDNR, when the MSCI was calculated according to WPRS criteria, the failure rate for such candidate reference streams was 31% for Class P, 39% for Class C, and 70% for Class U. The data trend showed a higher failure rate for increasingly smaller high quality streams when scored using WPRS biological criteria. This trend demonstrates the need to include the utilization of candidate reference streams in biological stream assessments.

Prior to the 2014 revision of the Missouri Water Quality Standards there was no size classification for streams. The 2014 revision codified size classification for rivers and streams based on five size categories for Warm Water, Cool Water and Cold Water Habitats. The size classifications are defined as Headwater, Creek, Small River, Large River and Great River. Water permanence continues to be classified as Class P (streams that maintain permanent flow even in drought periods); Class C (streams that cease flow in dry periods but maintain permanent pools which support aquatic life); and the newly adopted Class E (streams that do not maintain permanent surface flow or pools, but have surface flow or pools in response to precipitation events).

Table I of Missouri's Water Quality Standards lists 62 wadeable/perennial reference streams that provide the current basis for numeric biological criteria. Wadeable/perennial reference streams are a composite of Creek and Small River size classes. Interpretation of Creek (Size Code 2) and Small River (Size Code 3) is based on the Missouri Resource Assessment Partnership Shreve Link number found in Table 2. These wadeable/perennial reference streams were selected previous to the 2014 revision of the Missouri Water Quality Standards and were based on the former Table H (Stream Classifications and Use Designations). All, or a portion, of seven wadeable/perennial reference streams are Class C; and all, or a portion, of 57 wadeable/perennial reference streams are Class P.

As part of the 2014 revision of the Missouri Water Quality Standards, classified streams were changed from Table H to a modified version of the 1:100,000 National Hydrography Dataset. This dataset provides a geospatial framework for classified streams and is referred to as the Missouri Use Designation Dataset (MUDD). The streams and rivers now listed in MUDD contain approximately 100,000 miles of newly classified streams, many of which are the Headwater size class. Interpretation of Headwater size (Size Code 1) is based on the Missouri Resource Assessment Partnership Shreve Link number found in Table 2

## Table 2.

Missouri Resource Assessment Partnership Shreve Link Number for Stream Size Code

Stream Size	Size Code	Plains Shreve Link Number		<b>Ozark Shreve Link Number</b>
Headwater	1	1-2		1-4
Creek	2	3-30		5-50
Small river	3	31-700		51-450
Large River	4	701-maximum		451- maximum
Great River	5	Missouri & Mississippi		Missouri & Mississippi
Unknown	0			

In natural channels, biological assessments will be based on criteria established from comparable stream size and permanence. The need for alternate criteria is supported by the higher failure rate (70%) for small size streams when scored using wadeable/perennial reference stream biological criteria (MDNR, unpublished data). Since headwater stream biological criteria have not been established, the utilization of candidate headwater reference streams and draft criteria will be necessary to perform biological stream assessments of headwater size streams.

For test streams that are smaller than wadeable perennial reference streams, MDNR also samples five candidate reference streams (small control streams) of same or similar size and Valley Segment Type (VST) in the same EDU twice during the same year the test stream is sampled (additional information about the selection small control streams is provided below). Although in most cases the MDNR samples small candidate reference streams concurrently with test streams, existing data may be used if a robust candidate reference stream data set exists for the EDU.

If the ten small candidate reference stream scores are similar to wadeable perennial reference stream criteria, then they and the test stream are considered to have a Class C or Class P general warm water beneficial use, and the MSCI scoring system in the LMD

should be used. If the small candidate reference streams have scores lower than the wadeable perennial reference streams, the assumption is that the small candidate reference streams, and the test stream, represent designated uses related to stream size that are not yet approved by EPA in the state's water quality standards. The current assessment method for test streams that are smaller than reference streams is stated below.

- If the ten candidate reference stream (small control stream) scores are similar to WPRSs and meet LMD criteria for an unimpaired macroinvertebrate community, then the test stream will be assessed using MSCI based procedures in the LMD.
- If the ten candidate reference stream scores are lower than those of WPRSs and do not meet the LMD criteria for an unimpaired macroinvertebrate community, then:
  - a) The test stream will be assessed as having an unimpaired macroinvertebrate community if the test stream scores meet the LMD criteria for an unimpaired community;
  - b) The test stream data will be judged inconclusive if test stream scores are similar to candidate reference stream scores;
  - c) The test stream will be assessed as having a "suspect" macroinvertebrate community if its scores are found to be low but statistically close to candidate reference streams; or,
  - d) The test stream will be assessed as having an "impaired" macroinvertebrate community if its scores are found to be statistically lower than the candidate reference streams.

This method of assessing small streams will be used only until such time as the aquatic habitat protection use categories based on watershed size classifications of Headwater, Creek, Small River, Large River and Great River are is promulgated into Missouri Water Quality Standards and appropriate biological metrics are established for stream size and permanence.

The approach for determining a "suspect" or "impaired" macroinvertebrate community will be made using a direct comparison between all streams being evaluated, which may include the use of percent and/or mean calculations as determined on a case by case basis. All work will be documented on the macroinvertebrate assessment worksheet and be made available during the public notice period.

## Selecting Small Candidate Reference Streams

Accurately assessing streams that are smaller than reference streams begins with properly selecting small candidate reference streams. Candidate reference streams are smaller than WPRS streams and have been identified as "best available" reference stream segments in the same EDU as the test stream according to watershed, riparian, and in-channel conditions. The selection of candidate reference streams is consistent with framework

provided by Hughes *et al.* (1986) with added requirements that candidate reference streams must be from the same EDU and have the same or similar values for VST parameters. If candidate reference streams perform well when compared to WPRS, then test streams of similar size and VST are expected to do so as well. VST parameters important for selection are based on temperature, stream size, flow, geology, and relative gradient, with emphasis placed on the first three parameters.

The stepwise process for candidate reference stream selection is listed below.

1. Determine test stream reaches to be assessed. *Missouri Department of Natural Resources staff in the Water Protection Program's Monitoring and Assessment Unit will use data that indicates potential impairment to determine where additional studies are needed. Department staff with the Environmental Services Program's Aquatic Bioassessment Unit will be used to conduct studies requested by the WPP.* 

2. Identify appropriate EDU. *The Ecological Drainage Unit in which the test stream is located will be identified so that applicable biological criteria can be used to score macroinvertebrate data collected by Department biologists.* 

3. Determine five variable VST of test stream segments (1st digit = temperature; 2nd digit = size; 3rd digit = flow; 4th digit = geology; and 5th digit = relative gradient). *This five-digit VST code provides a description of the test stream for later use in selecting appropriate candidate reference streams that are similar to the test stream (giving temperature, size, and flow the highest importance).* 

4. Filter all stream segments within the same EDU for the relevant five variable VSTs (1st and 2nd digits especially critical for small streams). *The five VST features of the test stream will be determined by checking the "AQUATIC.STRM_SEGMENTS" layer in GIS software* (e.g. ArcMap). *This layer has an associated Attribute Table that has, among many other features, the five-digit VST code for classified Missouri streams. During the filtering process, the five-digit code (listed as "VST_5VAR in the Attribute Table) of the test stream is chosen in an ArcMap tool called "Select by Attributes." The five-digit code of the test stream is entered into this ArcMap tool, which can then be used to list only streams with the same five VST variables while excluding (i.e. "filtering out") all other streams with different variables.* 

5. Filter all potential VST stream segments for stressors against available GIS layers (e.g. point source, landfills, CAFOs, lakes, reservoirs, mining, etc.). A GIS layer that includes the stream segments selected in Step 4 will be created. The proximity of these selected stream layers will be evaluated relative to stressor layers cataloged in GIS using filtering steps similar to those described above. Stream segments with stressors having documented impacts will be eliminated from further consideration.

6. Filter all potential VST stream segments against historical reports and databases. *Past accounts of occurrences that may result in a stream failing to meet the "best available, least impaired" criteria will be evaluated. These incidents may include events such as fish kills, combined sewer overflows, or past environmental emergencies (e.g. releases of toxic substances). In contrast, historical reports may also include studies by other biologists that support the use of a candidate reference stream.* 

7. Develop candidate stream list with coordinates for field verification.

8. Field verify candidate list for actual use (e.g. animal grazing, in-stream habitat, riparian habitat), migration barriers (e.g. culverts, low water bridge crossings) representativeness, (gravel mining, and other obvious human stressors). *Biologists can make additional fine-scale adjustments to the list of candidate streams by visiting sites in person. Certain features visible on-site may have been missed with GIS and other computer based filtering. Stream flow must be field verified to be similar to test streams.* 

9. Of the sites remaining after field verification and elimination, at least five of the top ranked candidate sites will be subjected to additional evaluation outlined below.

For steps 4-9: These steps occur at the EDU level identified in step 2. These steps look at all streams within the identified EDU including those in the same Aquatic Ecological System (AES) Type as the test stream. Streams in the same AES Type as the test stream (within the identified EDU) will be given preference and be selected to go through the remaining steps (10-13) below.

10. Calculate land use-land cover of stream watershed and compare to EDU. Streams within the same EDU tend to be more similar to each other than to streams in different EDUs. A reference stream should be representative of the best available conditions in an EDU and should have similar land use-land cover compared to the EDU as a whole. This approach will ensure that waters with similar habitats are compared, provided that the candidate reference is representative of the least impaired and best available condition in the EDU.

11. Collect chemical, biological, habitat, and possibly sediment field data. *Collection of physical samples is the ultimate manner in which the quality of a stream is judged. Although factors evaluated in the previous steps are good indicators of whether a stream is of reference quality, it is the evaluation of chemical, physical and biological attributes that is the final determinant. If chemical sampling documents an exceedance of water quality standards, the candidate reference stream will be eliminated from consideration.* 

12. After multiple sampling events evaluate field data, land use, and historical data in biological assessment report. Aquatic systems are subject to fluctuation due to weather, stream flow, and other climatic conditions. Land use in the watershed of a candidate reference also can change over time. It is therefore important to collect multiple samples

over time that are reflective of a variety of conditions to adequately judge a candidate stream's macroinvertebrate community.

13. If field data are satisfactory, retain candidate reference stream label in database. Reference streams and candidate reference streams are labelled as such in a database maintained by the Department's Aquatic Bioassessment Unit in Jefferson City, Missouri

# Fish Community Data

The department utilizes fish community data to determine if aquatic life use is supported in certain types of Missouri streams. When properly evaluated, fish communities serve as important indicators of stream health. In Missouri, fish communities are surveyed by the MDC. MDC selects an aquatic subregion to sample each year, and therein, surveys randomly selected streams of 2nd to 5th order in size. Fish sampling follows procedures described in the document *Resource Assessment and Monitoring Program: Standard Operational Procedures--Fish Sampling* (Combes 2011). Numeric biocriteria for fish are represented by the fish Index of Biotic Integrity (fIBI). Development of the fIBI is described in the document *Biological Criteria for Stream Fish Communities of Missouri* (Doisy *et al.* 2008).

The fIBI is a multi-metric index made up of nine individual metrics, which include:

- number (#) of native individuals;
- # of native darter species;
- *#* of native benthic species;
- # of native water column species;
- *#* of native minnow species;
- # of all native lithophilic species;
- percentage (%) of native insectivore cyprinid individuals;
- % of native sunfish individuals; and,
- % of the three top dominant species.

Values for each metric, as directly calculated from the fish community sample, are converted to unitless scores of 1, 3, or 5 according to criteria in Doisy *et al.* (2008). The fIBI is then calculated by adding these unitless values together for a total possible score of 45. Doisy *et al.* (2008) established an impairment threshold of 36 (where the 25th percentile of reference sites represented a score of 37), with values equal to or greater than 36 representing unimpaired communities, and values less than 36 representing impaired communities. For more information regarding fIBI scoring, please see Doisy *et al.* (2008).

Based on consultation between the department and MDC, the fIBI impairment threshold value of 36 was used as the numeric biocriterion translator for making an attainment decision for aquatic life (Appendix C). Work by Doisy *et al.* (2008) focused on streams 3rd to 5th order in size, and the fIBI was only validated for streams in the Ozark ecoregion, not for streams in the Central Plains and Mississippi Alluvial Basin. Therefore, when assessing

streams with the fIBI, the index may only be applied to streams 3rd to 5th order in size from the Ozark ecoregion. Assessment procedures are outlined below.

### **Full Attainment**

- For seven or fewer samples and following MDC RAM fish community protocols, 75% of fIBI scores must be 36 or greater. Fauna achieving these scores are considered to be very similar to Ozark reference streams.
- For eight or more samples, the percent of samples scoring 36 or greater must be statistically similar to representative reference or control streams. To determine statistical similarity, a binomial probability Type I error rate (0.1) is calculated based on the null hypothesis that the test stream would have the same percentage (75%) of fIBI scores greater than 36 as reference streams. If the Type I error rate is more than the significance level  $\alpha$ =0.1, the fish community would be rated as unimpaired.

#### Non-Attainment

- For seven or fewer samples and following MDC RAM fish community protocols, 75% of the fIBI scores must be lower than 36. Fauna achieving these scores are considered to be substantially different than regional reference streams.
- For eight or more samples, the percent of samples scoring 36 or less must be statistically dissimilar to representative reference or control streams. To determine statistical dissimilarity, a binomial probability Type I error rate is calculated based on the null hypothesis that the test stream would have the same percentage (75%) of fIBI scores greater than 36 as reference streams. If the Type I error rate is less than 0.1, the null hypothesis is rejected and the fish community would be rated as impaired.

# Data will be judged inconclusive when outcomes do not meet requirements for decisions of full or non-attainment.

With the exception of two subtle differences, use of the binomial probability for fish community samples will follow the example provided for macroinvertebrate samples in the previous section. First, instead of test stream samples being compared to reference streams of the same EDU, they will be compared to reference streams from the Ozark ecoregion. Secondly, the probability of success used in the binomial distribution equation will always be set to 0.70 since Appendix D states to "rate a stream as impaired if biological criteria reference stream frequency of fully biologically supporting scores is greater than five percent more than the test stream."

Although  $1^{st}$  and  $2^{nd}$  order stream data will not be used to judge a stream as impaired for Section 303(d) purposes, the department may use the above assessment procedures to judge 1st and  $2^{nd}$  order streams as unimpaired. Moreover, should samples contain fIBI scores

less than 29, the department may judge the stream as "suspected of impairment" using the above procedures.

*Considerations for the Influence of Habitat Quality and Sample Representativeness* Low fIBI scores that are substantially different than reference streams could be the result of water quality problems, habitat problems, or both. When low fIBI scores are established, it is necessary to review additional information to differentiate between an impairment caused by water quality and one that is caused by habitat. The collection of a fish community sample is also accompanied by a survey of physical habitat from the sampled reach. MDC sampling protocol for stream habitat follows procedures provided by Peck *et al.* (2006). With MDC guidance, the department utilizes this habitat data and other available information to assure that an assessment of aquatic life attainment based on fish data is only the result of water quality, and that an impairment resulting from habitat is categorized as such. This section describes the procedures used to assure low fIBI scores are the result of water quality problems and not habitat degradation. The information below outlines the department's provisional method to identify unrepresentative samples and low fIBI scores with questionable habitat condition, and ensure corresponding fish IBI scores are not used for Section 303(d) listing.

- a) Following recommendations from the biocriteria workgroup, the department will consult MDC about the habitat condition of particular streams when assessing low fIBI scores.
- b) Samples may be considered for Section 303(d) listing ONLY if they were collected in the Ozark ecoregion, and the samples were collected during normal representative conditions, based upon best professional judgment from MDC staff,. Samples collected from the Central Plains and Mississippi Alluvial Basin are excluded from Section 303(d) listing.
- c) Only samples from streams 3rd to 5th order in size may be considered for Section 303(d) listing. Samples from 1st or 2nd order stream sizes are excluded from Section 303(d) consideration; however, they may be placed into Categories 2B and 3B if impairment is suspected, or into Categories 1, 2A, or 3A if sample scores indicate a stream is unimpaired. Samples from lower stream orders are surveyed under a different RAM Program protocol than 3rd to 5th order streams.
- d) Samples that are ineligible for Section 303(d) listing include those collected from losing streams, as defined by the Department of Geology and Land Survey, or collected in close proximity to losing streams. Additionally, ineligible samples may include those collected on streams that were considered to have natural flow issues (such as streams reduced predominately to subsurface flow) preventing good fish IBI scores from being obtained, as determined through best professional judgment of MDC staff.

e) Fish IBI scores must be accompanied by habitat samples with a QCPH1 habitat index score. MDC was asked to analyze meaningful habitat metrics and identify samples where habitat metrics seemed to indicate potential habitat concerns. As a result, a provisional index named QCPH1 was developed. QCPH1 values less than 0.39 indicate poor habitat, and values greater than 0.39 suggest adequate habitat is available. The QCPH1 comprises six sub-metrics indicative of substrate quality, channel disturbance, channel volume, channel spatial complexity, fish cover, and tractive force and velocity.

The QCPH1 index is calculated as follows:

QCPH1= ((Substrate Quality*Channel Disturbance*Channel Volume* Channel Spatial Complexity * Fish Cover * Tractive Force & Velocity)^{1/6})

Where sub-metrics are determined by:

**Substrate Quality** = [(embeddedness + small particles)/2] * [(filamentous algae + aquatic macrophyte)/2] * bedrock and hardpan

**Channel Disturbance** = concrete * riprap * inlet/outlet pipes * relative bed stability * residual pool observed to expected ratio

**Channel Volume** = [(dry substrate+width depth product + residual pool + wetted width)/4]

**Channel Spatial Complexity** = (coefficient of variation of mean depth + coefficient of variation of mean wetted width + fish cover variety)/3

**Fish Cover** = [(all natural fish cover + ((brush and overhanging vegetation + boulders + undercut bank + large woody debris)/4) + large types of fish cover)/3]

**Tractive Force & Velocity** = [(mean slope + depth * slope)/2]

Unimpaired fish IBI samples (fIBI  $\geq$ 36) with QCPH1 index scores below the 0.39 threshold value, or samples without a QCPH1 score altogether, are eliminated from consideration for Category 5 and instead placed into Categories 2B or 3B should an impairment be suspected. Impaired fish communities (fIBI <36) with QCPH1 scores <0.39 can be placed into Category 4C (non-discrete pollutant/habitat impairment). Impaired fish communities (fIBI <36) with adequate habitat scores (QCPH1 >0.39) can be placed into Category 5. Appropriate streams with unimpaired fish communities and adequate habitat (QCPH1 >0.39) may be used to judge a stream as unimpaired.

Similar to macroinvertebrates, assessment of fish community information must be based on data coded level three or four as described in Section II.C of this document. Data coded as levels three and four represent environmental data with the greatest degree of assurance, and thus, assessments will include multiple samples from a single site, or samples from multiple sites within a single reach.

Following the department's provisional methodology, fish community samples available for assessment (using procedures in Appendix C & D include only those from 3rd to 5th order Ozark Plateau streams, collected under normal, representative conditions, where habitat seemed to be good, and where there were no issues with inadequate flow or water volume.

### IV. Other Biological Data

On a case by case basis, the department may use biological data other than MSCI or fIBI scores for assessing attainment of aquatic life. Other biological data may include information on single indicator aquatic species that are ecologically or recreationally important, or individual measures of community health that respond predictably to environmental stress. Measures of community health could be represented by aspects of structure, composition, individual health, and processes of the aquatic biota. Examples could include measures of density or diversity of aquatic organisms, replacement of pollution intolerant taxa, or even the presence of biochemical markers.

#### Acute or Chronic Toxicity Tests

If toxicity tests are to be used as part of the weight of evidence then accompanying media (water or sediment) analysis must accompany the toxicity test results. (e.g. Metals concentrations in the sediment sample used for an acute toxicity test must accompany the toxicity test results if metals are a concern; or if PAHs are a concern then TOC must accompany toxicity test results). The organism, its developmental stage used for the toxicity test, and the duration of the test must also accompany the results.

Other biological data should be collected under a well vetted study that is documented in a scientific report, a weight of evidence approach should be established, and the report should be referenced in the 303(d) listing worksheet. If other biological data is a critical component of the community and has been adversely affected by the presence of a pollutant or stressor, then such data would indicate a water body is impaired. The department's use of other biological data is consistent with EPA's policy on independent applicability for making attainment decisions, which is intended to protect against dismissing valuable information when diagnosing an impairment of aquatic life.

The use of other biological data in water body assessments occurs infrequently, but when available, it is usually assessed in combination with other information collected within the water body of interest. The department will avoid using other biological data as the sole justification for a Section 303(d) listing; however, other biological data will be used as part of a weight of evidence analysis for making the most informed assessment decision.

#### V. <u>Toxic Chemicals</u>

#### Water

For the interpretation of toxicity test data, standard acute or chronic bioassay procedures using freshwater aquatic fauna such as, but not limited to, *Ceriodaphnia dubia*, Fathead Minnows (*Pimephales promelas*), *Hyalella azteca*, or Rainbow Trout (*Oncorhynchus mykiss*)¹⁸ will provide adequate evidence of toxicity for 303(d) listing purposes. Microtox[®]toxicity tests may be used to list a water as affected by "toxicity" only if there are data of another kind (freshwater toxicity tests, sediment chemistry, water chemistry, or biological sampling) that indicate water quality impairment.

For any given water, available data may occur throughout the system and/or be concentrated in certain areas. When the location of pollution sources are known, the department reserves the right to assess data representative of impacted conditions separately from data representative of unimpacted conditions. Pollution sources include those that may occur at discrete points along a water body, or those that are more diffuse.

#### Chronic Toxicity Events

Parameters in WQS that are labeled as chronic criterion can be assessed in two ways: 1. Continuous Data Sondes

- 1. Continuous Data Sondes
  - a. For data that has been collected consecutively over time, (eg. A data sonde collecting pH every 15 minutes or a two week time period) the data will be used as is after QA/QC procedures.
- 2. Grab Samples
  - a. For samples that have not been collected consecutively, (eg. Grab sample collected once a week) the hydrologic flow conditions of the stream or the closest USGS gage will be used to verify the sample was collected during stable flow conditions. If the flow conditions were <u>unstable</u> then the sample <u>will not be assessed</u> against the chronic criterion. If the flow conditions were <u>stable</u> then the sample <u>will be assessed</u> against the chronic criterion. There are three categories of stable flow conditions: High, Medium, and Low.
    - i. High Stable Flow is greater than the 50th percentile exceedance flow and less than 10% change in flow over a 48 hour period.
    - Medium Stable Flow is between the 90th percentile exceedance flow and the 50th percentile exceedance flow and less than 15% change in flow over a 48 hour period.
    - iii. Low Stable Flow is less than the 90th percentile exceedance flow or less than one cubic foot per second and less than 20% change in flow over a 48 hour period.

#### Sediment

For toxic chemicals occurring in benthic sediments, data interpretation will include calculation of a geometric mean for specific toxins from an adequate number of samples, and comparing that value to a corresponding Probable Effect Concentration (PEC) given by MacDonald *et al.* (2000). The PEC is the level of a pollutant above which harmful effects

¹⁸ Reference 10 CSR 20-7.015(9)(L) for additional information

on the aquatic community are likely to be observed. MacDonald (2000) gave an estimate of accuracy for the ability of individual PECs to predict toxicity. For all metals except arsenic, pollutant geometric means will be compared to 150% of the recommended PEC values. These comparisons should meet confidence requirements applied elsewhere in this document. When multiple metal contaminants occur in sediment, toxicity may occur even though the level of each individual pollutant does not reach toxic levels. The method of estimating the synergistic effects of multiple metals in sediments is described below.

The sediment PECs given by MacDonald *et. al.* (2000) are based on some additional data assumptions. Those assumptions include a 1% Total Organic Carbon (TOC) content and that the sample has been sieved to less than 2mm.

The department uses 150% of the PEC values to account for some variability in our assessment of sediment toxicity. Also see the *Equilibrium Partitioning Sediment Benchmark* section on page 39 for information on TOC and sulfide considerations for metals toxicity in sediment.

For the sample sieving assumption, the department will use non-sieved (bulk) sediment concentrations for screening level data (Data Code One). Current impairments that have used bulk sediment data as evidence for impairment will remain on the list of impaired streams until sieved data can be collected to show either that it should remain on the list or that the sieved concentrations are below the 150% PEC values. Data that has been sieved to less than 2mm or smaller will be used for comparison to the 150% PEC values.

# The Meaning of the Sediment Quotient and How to Calculate It

Although sediment criteria in the form of a PEC_are given for several individual contaminants, it is recognized that when multiple contaminants occur in sediment, toxicity may occur even though the level of each individual pollutant does not reach toxic levels. The method of estimating the synergistic effects of multiple pollutants in sediments given in MacDonald *et al.* (2000) includes the calculation of a PECQ. PECQs greater than 0.75 will be judged as toxic.

This calculation is made by dividing the pollutant concentration in the sample by the PEC value for that pollutant. For single samples, the quotients are summed, and then normalized by dividing that sum by the number of pollutants in the formula. When multiple samples are available, the geometric mean (as calculated for specific pollutants) will be placed in the numerator position for each pollutant included in the equation.

Example: A sediment sample contains the following results in mg/kg:

Arsenic 2.5, Cadmium 4.5, Copper 17, Lead 100, and Zinc 260.

The PEC values for these five pollutants in respective order are:

33, 4.98, 149, 128, and 459 mg/kg.

PECQ =

[(2.5/33) + (4.5/4.98) + (17/149) + (100/128) + (260/459)]/5 = 0.488

# Using PECQ to Judge Metals Toxicity

Based on research by MacDonald *et al.* (2000) 83% of sediment samples with a PECQ less than 0.5 were non-toxic while 85% of sediment samples with a PECQ greater than 0.5 were toxic. Therefore, to accurately assess the synergistic effects of sediment contaminants on aquatic life, the department will judge PECQ greater than 0.75 as toxic.

#### Using Total PAHs to Judge Toxicity

Polycyclic Aromatic Hydrocarbons (PAHs) are organic compounds containing carbon and hydrogen forming aromatic rings (cyclic molecular shapes). The presence of PAHs in the environment when not expected (natural sources can be coal and oil deposits) result from the use and breakdown hydrocarbon compounds. There are three different sources of hydrocarbon compounds: plants (Phytogenic), petroleum (Petrogenic), and the combustion of petroleum, wood, coal etc. (Pyrogenic). Most common sources of PAHs in stream are sealants (coal tar) and other treatments of roads, driveways, and parking lots.

Mount *et al.* (2003) indicates that individual PAH sediment guidelines (PECs) are based on the samples also having an elevated presence of additional PAHs, potentially overestimating the actual toxicity of an individual PAH PEC value. The use of a Total PAH guideline (PEC) reduces variability and provides a better representation of toxicity than the use of individual PAH PECs.

Based on research by MacDonald *et.al* (2000) 81.5% of sediment samples with a Total PAH value less than 22.8 mg/kg (ppm) were non-toxic while 100% of sediment samples with a Total PAH value greater than 22.8 mg/kg (ppm) were toxic. Therefore, to accurately assess the toxicity to aquatic life of total PAHs in sediment, the department will judge Total PAH values greater than 150% of the PEC value (34.2 mg/kg) as toxic. For PAHs the sum of the geometric means for all PAH compounds will be compared to 150% of the recommended PEC value for total PAHs.

# What compounds are considered in calculating Total PAHs and how will they be compared to the 150% PEC value?

To calculate Total PAHs for a sample, Mount *et.al.* (2003) recommends following United States Environmental Protection Agency, Environmental Monitoring Assessment Program's definition of Total PAHs. This definition includes 34 PAH compounds; 18 parent PAHs and 16 alkylated PAHs. (See Table 3 below for a list of these compounds.) Mount *et.al.* (2003) shows that using less than the 34 PAH compounds can underestimate the toxicity of PAHs in sediment. Total Organic Carbon (TOC) has the potential to affect the bio-

availability of PAHs. Organic carbon can provide a binding phase for PAHs, but the extent of that binding capacity is unknown. Through the Weight of Evidence approach (see section D II) the department will consider the effects of TOC on a case by case basis.

Commonly only 14 to 18 of the 34 PAH compounds are requested for analysis. Therefore the process to judge toxicity due to total PAHs is as follows:

- If samples are analyzed for fewer than the 34 PAH compounds then
  - If the sum (sum of the geometric means for more than one sample) of those compounds is greater than the 150% PEC then the sample(s) will be judged as toxic.
  - If the sum (sum of the geometric means for more than one sample) of those compounds is greater than the 100% PEC but less than 150% of the PEC then the sample(s) will be judged as inconclusive.
  - If the sum (sum of the geometric means for more than one sample) of those compounds is less than the 100% PEC then the values will be judged as nontoxic.
- o If samples are analyzed for the 34 PAH compounds then
  - If the sum (sum of the geometric means for more than one sample) of those compounds is greater than the 150% PEC then the sample(s) will be judged as toxic.
  - If the sum (sum of the geometric means for more than one sample) of those compounds is less than the 150% PEC then the values will be judged as nontoxic.

# Table 3. List of 34 polycyclic aromatic hydrocarbon (PAH) compounds that areconsidered for the calculation of total PAHs.

Parent PAHs	Alkylated PAHs
Acenaphthene	C1-Benzanthracene/chrysenes
Acenphthylene	C1-Fluorenes
Anthracene*	C1-Naphthalenes
Benz(a)anthracene*	C1-Phenanthrene/anthracenes
Benzo(a)pyrene*	C1-Pyrene/fluoranthenes
Benzo(b)fluoranthene	C2-Benzanthracene/chrysenes
Benzo(e)pyrene	C2-Fluorenes
Benzo(g,h,i)perylene	C2-Naphthalenes
Benzo(k)fluoranthene	C2-Phenanthrene/anthracenes

Chrysene*	C3-Benzanthracene/chrysenes
Dibenz(a,h)anthracene	C3-Fluorenes
Fluoranthene*	C3-Naphthalenes
Fluorene*	C3-Phenanthrene/anthracenes
Indeno(1,2,3-cd)pyrene	C4-Benzanthracene/chrysenes
Naphthalene*	C4-Naphthalenes
Perylene	C4-Phenanthracene/anthracenes
Phenanthrene*	
Pyrene*	
*Listed in Table 3 of MacDonald et.al (2000)	

### Equilibrium Partitioning Sediment Benchmark (ESB) Data

Another type of analysis of the toxicity of metals in sediment is based on the EPA (2006) paper that discusses ESBs and their use. The department will not be collecting this type of data but will consider the data under the weight of evidence approach. To be considered the data must be accompanied by the name of the laboratory that completed the analysis and a copy of their laboratory procedures and QC documentation. Sieved sediment samples will be judged as toxic for metals in sediment if the sum of the simultaneously extracted metals minus acid volatile sulfides then divided by the fractional organic carbon [( $\Sigma$ SEM-AVS)/FOC] is greater than 3000. If additional sieved sediment samples also show toxicity for a particular metal(s) then that particular metal(s) will be identified as the cause for toxicity.

Pictorial Representations (flow charts) for how these different sediment toxicity procedures could be used in the weight of evidence procedure are displayed in Appendix E.

#### VI. Duration of Assessment Period

Except where the assessment period is specifically noted in Appendix B, the time period during which data will be used in making the assessments will be determined by data age and data code considerations, as well as representativeness considerations such as those described in footnote 14.

#### VII. Assessment of Tier Three Waters

Waters given Tier Three protection by the anti-degradation rule at 10 CSR 20-7.031(2) shall be considered impaired if data indicate water quality has been reduced in comparison to its historical quality. Historical quality is determined from past data that best describes a

Historical data gathered at the time waters were given Tier Three protection will be used if available. Because historical data may be limited, the historical quality of the waters may be determined by comparing data from the assessed segment with data from a "representative" segment. A representative segment is a body or stretch of water that best reflects the conditions that probably existed at the time the anti-degradation rule first applied to the waters being assessed. Examples of possible representative data include 1) data from stream segments upstream of assessed segments that receive discharges, and 2) data from other water bodies in the same ecoregion having similar watershed and landscape characters. These representative stream segments also would be characterized by receiving discharges similar to the quality and quantity of historic discharges of the assessed segment. The assessment may also use data from the assessed segment gathered between the time of the initiation of Tier Three protection and the last known time in which upstream discharges, runoff, and watershed conditions remained the same, provided that the data do not show any significant trends of declining water quality during that period.

The data used in the comparisons will be tested for normality and an appropriate statistical test will be applied. The null hypothesis for statistical analysis will be that water quality at the test segment and representative segment is the same. This will be a one-tailed test (the test will consider only the possibility that the assessed segment has poorer water quality) with the alpha level of 0.1, meaning that the test must show greater than a 90 percent probability that the assessed segment has poorer water quality that the representative segment before the assessed segment can be listed as impaired.

#### VIII. Other Types of Information

- 1. Observation and evaluation of waters for noncompliance with state narrative water quality criteria. Missouri's narrative water quality criteria, as described in 10 CSR 20-7.031 Section (3), may be used to evaluate waters when a quantitative (narrative) value can be applied to the pollutant. These narrative criteria apply to both classified and unclassified waters and prohibit the following in waters of the state:
  - a. Waters shall be free from substances in sufficient amounts to cause the formation of putrescent, unsightly, or harmful bottom deposits or prevent full maintenance of beneficial uses;
  - b. Waters shall be free from oil, scum, and floating debris in sufficient amounts to be unsightly or prevent full maintenance of beneficial uses;
  - c. Waters shall be free from substances in sufficient amounts to cause unsightly color or turbidity, offensive odor, or prevent full maintenance of beneficial uses;
  - d. Waters shall be free from substances or conditions in sufficient amounts to result in toxicity to human, animal, or aquatic life;

- e. There shall be no significant human health hazard from incidental contact with the water;
- f. There shall be no acute toxicity to livestock or wildlife watering;
- g. Waters shall be free from physical, chemical, or hydrologic changes that would impair the natural biological community;
- h. Waters shall be free from used tires, car bodies, appliances, demolition debris, used vehicles or equipment, and solid waste as defined in Missouri's Solid Waste Law, section 260.200, RSMo, except as the use of such materials is specifically permitted pursuant to sections 260.200–260.247, RSMo;
- 2. Habitat assessment protocols for wadeable streams have been established and are conducted in conjunction with sampling aquatic macroinvertebrates and fish. Methods for evaluating aquatic macroinvertebrate and fish community data include assessment procedures that account for the presence or absence of representative habitat quality. The department will not use habitat data alone for assessment purposes.

#### E. Other 303(d) Listing Considerations

• Adding to the Existing List or Expanding the Scope of Impairment to a Previously Listed Water.

The listed portion of impaired water bodies may be increased based on recent monitoring data following the guidelines in this document. One or more new pollutants may be added to the listing for a water body already on the list based on recent monitoring data following these same guidelines. Waters not previously listed may be added to the list following the guidelines in this document.

• Deleting from the Existing List or Decreasing the Scope of Impairment to a Previously Listed Water

The listed portion of an impaired water body may be decreased based on recent monitoring data following the guidelines in this document. One or more pollutants may be deleted from the listing for a water body already on the list based on recent monitoring data following guidelines in Appendix D. Waters may be completely removed from the list for several reasons¹⁹; the most common being (1) water has returned to compliance with water quality standards, or (2) the water has an approved TMDL study or Permit in Lieu of a TMDL.

• Listing Length of Impaired Segments

The length of a 303(d) listing is currently based on the WBID length from the Missouri WQS. The department is using the WBID as the assessment unit to report to USEPA.

¹⁹ See, "Guidance for 2006 Assessment, Listing and Reporting Requirements Pursuant to Sections 303(d), 305(b) and 314 of the Clean Water Act". USEPA, Office of Water, Washington DC.

When the department gains the database capability to further refine assessment units into segments smaller than WBIDs while maintain a transparent link to the WBID and Missouri's WQS, then the department will do so and will provide justification for splitting the WBID up into smaller assessment units in the assessment worksheets and can be discussed during the public notice process.

# F. Prioritization of Waters for TMDL Development

Section 303(d) of the Clean Water Act and federal regulation 40 CFR 130.7(b)(4) requires states to submit a priority ranking of waters requiring TMDLs. The department will prioritize development of TMDLs based on several variables including:

- social impact/public interest and risk to public health
- complexity and cost (including consideration of budget constraints), availability of data of sufficient quality and quantity for TMDL modeling
- court orders, consent decrees, or other formal agreements
- source of impairments
- existence of appropriate numeric quality criteria
- implementation potential and amenability of the problem to treatment, and
- Integrated Planning efforts by municipalities and other entities

The department's TMDL schedule will represent its prioritization. The TMDL Program develops the TMDL schedule and maintains it at the following website: <a href="http://www.dnr.mo.gov/env/wpp/tmdl/">http://www.dnr.mo.gov/env/wpp/tmdl/</a>.

# G. Resolution of Interstate/International Disagreements

The department will review the draft 303(d) Lists of all other states with which it shares a border (Missouri River, Mississippi River, Des Moines River and the St. Francis River) or other interstate waters. Where the listing for the same water body in another state is different than the one in Missouri, the department will request the data and the listing justification. These data will be reviewed following the evaluation guidelines in this document. The Missouri Section 303(d) list may be changed pending the evaluation of this additional data.

# H. Statistical Considerations

The most recent EPA guidance on the use of statistics in the 303(d) listing methodology document is given in Appendix A. Within this guidance there are three major recommendations regarding statistics:

- ° Provide a description of analytical tools the state uses under various circumstances
- [°] When conducting hypothesis testing, explain the various circumstances under which the burden of proof is placed on proving the water is impaired and when it is placed on proving the water is unimpaired, and
- ° Explain the level of statistical significance ( $\alpha$ ) used under various circumstances.

### • Description of Analytical Tools

Appendix D, describes the analytical tools the department will use to determine whether a water body is impaired and whether or when a listed water body is no longer impaired.

#### • Rationale for the Burden-of-Proof

Hypothesis testing is a common statistical practice. The procedure involves first stating a hypothesis you want to test, such as "the most frequently seen color on clothing at a St. Louis Cardinals game is red" and then the opposite or null hypothesis "red is not the most frequently seen color on clothing at a Cardinals game." Then a statistical test is applied to the data (a sample of the predominant color of clothing worn by 200 fans at a Cardinals game on July 12) and based on an analysis of that data, one of the two hypotheses is chosen as correct.

In hypothesis testing, the burden-of-proof is always on the alternate hypothesis. In other words, there must be very convincing data to make us conclude that the null hypothesis is not true and that we must accept the alternate hypothesis. How convincing the data must be is stated as the "significance level" of the test. A significance level of  $\alpha$ =0.10 means that there must be at least a 90 percent probability that the alternate hypothesis is true before we can accept it and reject the null hypothesis.

For analysis of a specific kind of data, either the test significance level or the statement of null and alternative hypotheses, or both, can be varied to achieve the desired degree of statistical rigor. The department has chosen to maintain a consistent set of null and alternate hypotheses for all our statistical procedures. The null hypothesis will be that the water body in question is unimpaired and the alternate hypothesis will be that it is impaired. Varying the level of statistical rigor will be accomplished by varying the test significance level. For determining impairment (Appendix D) test significance levels are set at either  $\alpha$ =0.1 or  $\alpha$ =0.4, meaning the data must show at minimum 90% or 60% probability, respectively that the water body is impaired. However, if the department retained these same test significance levels in determining when an impaired water body had been restored to an unimpaired status (Appendix D) some undesirable results can occur.

For example, using a 0.1 significance level for determining both impairment and nonimpairment, if the sample data indicate the stream had a 92 percent probability of being impaired, it would be rated as impaired. If subsequent data were collected and added to the database, and the data now showed the water had an 88 percent chance of being impaired, it would be rated as unimpaired. Judging as unimpaired a water body with only a 12 percent probability of being unimpaired is clearly a poor decision. To correct this problem, the department will use a test significance level of 0.4 for some analytes and 0.6 for others. This will increase our confidence in determining compliance with criteria to 40 percent and 60 percent, respectively under the worst case conditions, and for most databases will provide an even higher level of confidence.

#### • Level of Significance Used in Tests

The choice of significance levels is largely related to two concerns. The first concern is with matching error rates with the severity of the consequences of making a decision error. The second addresses the need to balance, to the degree practicable, Type I and Type II error rates. For relatively small number of samples, the disparity between Type I and Type II errors can be large. The tables 4 and 5 below shows error rates calculated using the binomial distribution for two very similar situations. Type I error rates are based on a stream with a 10 percent exceedance rate of a standard, and Type II error rates are based on a stream with a 15 percent exceedance rate of a standard. Note that when sample size remains the same, Type II error rates, the Type II error rate declines as sample size increases (Table 5).

#### Table 4.

Effects of Type I error rates on Type II error rates. Type I error rates are based on a stream with a 10 percent exceedance rate of a standard and Type II error rates for a stream with a 15 percent exceedance rate of a standard.

Total No.	No. Samples	Type I	Type II
of Samples	Meeting Std.	Error Rate	Type II Error Rate
18	17	0.850	0.479
18	16	0.550	0.719
18	15	0.266	0.897
18	14	0.098	0.958
18	13	0.028	0.988

#### Table 5.

Effects of Type I error rates and sample size on Type II error rates. Type I error rates are based on a stream with a 10 percent exceedance rate of a standard and Type II error rates for a stream with a 15 percent exceedance rate of a standard.

Total No. of Samples	No. Samples Meeting Std.	Type I Error Rate	Type II Error Rate
6	5	0.469	0.953
11	9	0.303	0.930
18	15	0.266	0.897
25	21	0.236	0.836

#### • Use of the Binomial Probability Distribution for Interpretation of the 10 Percent Rule

There are two options for assessing data for compliance with the 10 percent rule. One is to simply calculate the percent of time the criterion value is not met, and to judge the water to be impaired if this value is greater than 10 percent. The second method is to use some evaluative

# • Other Statistical Considerations

rate.

Prior to calculation of confidence limits, the normality of the data set will be evaluated. If normality is improved by a data transformation, the confidence limits will be calculated on the transformed data.

Time of sample collection may be biased and interfere with an accurate measurement of frequency of exceedance of a criterion. Data sets composed mainly or entirely of storm water data or data collected only during a season when water quality problems are expected could result in a biased estimate of the true exceedance frequency. In these cases, the department may use methods to estimate the true annual frequency and display these calculations whenever they result in a change in the impairment status of a water body.

For waters judged to be impaired based on biological data where data evaluation procedures are not specifically noted in Table 1, the statistical procedure used, test assumptions, and results will be reported.

• Examples of Statistical Procedures

Two Sample "t" Test for Color

Null Hypothesis: Amount of color is no greater in a test stream than in a control stream. As stated, this is a one-sided test, meaning that we are only interested in determining whether or not the color level in the test stream is greater than in a control stream. If the null hypothesis had been "amount of color is different in the test and control streams," we would have been interested in determining if the amount of color was either less than or greater than the control stream, a two-sided test.

# Significance Level: α=0.10

Data Set: Platinum-Cobalt color units data for the test stream and a control stream samples collected at each stream on same date.

Test Stream	70	45	35	45	60	60	80
Control Stream	50	40	20	40	30	40	75
Difference (T-C)	20	5	15	5	30	20	5

Statistics for the Difference: Mean = 14.28, standard deviation = 9.76, n = 7 Calculated "t" value = (square root of n)(mean)/standard deviation = 3.86 Tabular "t" value is taken from a table of the "t" distribution for 2 alpha (0.20) and n-1 degrees of freedom. Tabular "t" = 1.44.

Since calculated "t" value is greater than tabular t value, reject the null hypothesis and conclude that the test stream is impaired by color.

### Statistical Procedure for Mercury in Fish Tissue

Data Set: data in  $\mu g/Kg$  130, 230, 450. Mean = 270, Standard Deviation = 163.7 The 60% Lower Confidence Limit Interval = the sample mean minus the quantity: ((0.253)(163.7)/square root 3) = 23.9. Thus the 60% LCL Confidence Interval is 246.1  $\mu g/Kg$ .

The criterion value is  $300 \ \mu g/Kg$ . Therefore, since the 60% LCL Confidence Interval is less than the criterion value, the water is judged to be unimpaired by mercury in fish tissue, and the water body is placed in either Category 2B or 3B.

#### I. References

- Barbour, M.T., J. Gerritsen, G.E. Griffith, R. Frydenborg, E. McCarron, J.S. White, M.L. Bastian. 1996. A framework for biological criteria for Florida streams using benthic macroinvertebrates. Journal of the North American Benthological Society 15(2): 185-211.
- Doisy, K.E., C.F. Rabeni, M.D. Combes, and R.J. Sarver. 2008. Biological Criteria for Stream Fish Communities of Missouri. Final Report to the United States Environmental Protection Agency. Missouri Cooperative Fish and Wildlife Research Unit, Columbia, Missouri. 91 pp.
- Hughes, R.M., D.P. Larsen, and J.M. Omernik. 1986. Regional reference sites: a method for assessing stream pollution. Environmental Management 10(5): 625-629.
- Ohio Environmental Protection Agency. 1990. The Use of Biocriteria in the Ohio EPA Surface Water Monitoring and Assessment Program. Columbus, Ohio.
- Fischer, S. and M. Combes. 2011. Resource Assessment and Monitoring Program: Standard Operating Procedures – Fish Sampling. Missouri Department of Conservation, Jefferson City, Missouri.
- MacDonald, D.D, Ingersoll, C. G., Berger, T. A. 2000. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems. Arch. Environ. Contamination Toxicology. 39, 20-31.
- Missouri Department of Natural Resources. 2002. Biological Criteria for Wadeable/Perennial Streams of Missouri. Missouri Department of Natural Resources, Environmental Services Program, P.O. Box 176, Jefferson City, Missouri 65102. 32 pp.
- Missouri Department of Natural Resources. 2016a. Stream Habitat Assessment. Missouri Department of Natural Resources, Environmental Services Program, P.O. Box 176, Jefferson City, Missouri 65102. 40 pp.
- Missouri Department of Natural Resources. 2015. Semi-Quantitative Macorinvertebrate Stream Bioassessment. Missouri Department of Natural Resources, Environmental Services Program, P.O. Box 176, Jefferson City, Missouri 65102. 29 pp.
- Missouri Department of Natural Resources. 2016bTaxonomic Levels for Macroinvertebrate Identifications. Division of Environmental Quality, Environmental Services Program, P.O. Box 176, Jefferson City, Missouri 65102. 39 pp.
- Mount, D. R., Ingersoll, C. G. and McGrath, J. A. 2003. Approaches to Developing Sediment Quality Guidelines for PAHs. PAHs: An Ecotoxicological Perspective (ed P. E. T. Douben), John Wiley & Sons, Ltd, Chichester, UK. doi: 10.1002/0470867132.ch17

- Peck, D.V., A.T. Herlihy, B.H. Hill, R.M. Hughes, P.R. Kaufmann, D.J. Klemm, J.M. Lazorchak, F.H. McCormick, S.A. Peterson, P.L. Ringold, T. Magee, and M.Cappaert. 2006. Environmental Monitoring and Assessment Program-Surface Waters Western Pilot Study: Field Operation Manual for Wadeable Streams. EPA/620/R-06/003. U.S. Environmental Protection Agency, Office of Research and Development, Washington, D.C.
- U.S. EPA. 1996. Biological Criteria: Technical Guidance for Streams and Small Rivers. EPA 822-B-96-001. Office of Water, Washington D.C. 162 pp.
- U.S. EPA. 2005. Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the Protection of Benthic Organisms: Metal Mixtures (Cadmium, Copper, Lead, Nickel, Silver and Zinc). EPA-600-R-02-011. Office of Research and Development. Washington, DC 20460

#### Appendix A

**Excerpt** from *Guidance for 2006 Assessment, Listing and Reporting Requirements Pursuant to Sections 303(d), 305(b) and 314 of the Clean Water Act.* July 29, 2005. USEPA pp. 39-41.

The document can be read in its entirety from the US. EPA web site: http://water.epa.gov/lawsregs/lawsguidance/cwa/tmdl/upload/2006irg-report.pdf

G. How should statistical approaches be used in attainment determinations?

The state's methodology should provide a rationale for any statistical interpretation of data for the purpose of making an assessment determination.

• Description of statistical methods to be employed in various circumstances

The methodology should provide a clear explanation of which analytic tools the state uses and under which circumstances. EPA recommends that the methodology explain issues such as the selection of key sample statistics (arithmetic mean concentration, median concentration, or a percentile), null and alternative hypotheses, confidence intervals, and Type I and Type II error thresholds. The choice of a statistic tool should be based on the known or expected distribution of the concentration of the pollutant in the segment (e.g., normal or log normal) in both time and space.

Past EPA guidance (1997 305(b) and 2000 CALM) recommended making nonattainment decisions, for "conventional pollutants²⁰" — TSS, pH, BOD, fecal coliform bacteria, and oil and grease — when more than "10% of measurements exceed the water quality criterion." (However, EPA guidance has not encouraged use of the "10% rule" with other pollutants, including toxics.) Use of this rule when addressing conventional pollutants, is appropriate if its application is consistent with the manner in which applicable WQC are expressed. An example of a WQC for which an assessment based on the ten percent rule would be appropriate is the EPA acute WQC for fecal coliform bacteria, applicable to protection of water contact recreational use. This 1976-issued WQC was expressed as, "…no more than ten percent of the samples exceeding 400 CFU per 100 ml, during a 30-day period." Here, the assessment methodology is clearly reflective of the WQC.

On the other hand, use of the ten percent rule for interpreting water quality data is usually not consistent with WQC expressed either as: 1) instantaneous maxima not to be surpassed at any time, or 2) average concentrations over specified times. In the case of "instantaneous maxima (or minima) never to occur" criteria use of the ten percent rule typically leads to the belief that segment conditions are equal or better than specified by the WQC, when they in fact are considerably worse. (That is,

²⁰ There are a variety of definitions for the term "conventional pollutants." Wherever this term is referred to in this guidance, it means "a pollutant other than a toxic pollutant."

pollutant concentrations are above the criterion-concentration a far greater proportion of the time than specified by the WQC.) Conversely, use of this decision rule in concert with WQC expressed as average concentrations over specific times can lead to concluding that segment conditions are worse than WQC, when in fact they are not.

If the state applies different decision rules for different types of pollutants (e.g., toxic, conventional, and non-conventional pollutants) and types of standards (e.g., acute vs. chronic criteria for aquatic life or human health), the state should provide a reasonable rationale supporting the choice of a particular statistical approach to each of its different sets of pollutants and types of standards.

 Elucidation of policy choices embedded in selection of particular statistical approaches and use of certain assumptions EPA strongly encourages states to highlight policy decisions implicit in the statistical analysis that they have chosen to employ in various circumstances. For example, if hypothesis testing is used, the state should make its decision-making rules transparent by explaining why it chose either "meeting WQS" or "not meeting WQS" as the null hypothesis (rebuttable presumption) as a general rule for all waters, a category of waters, or an individual segment. Starting with the assumption that a water is "healthy" when employing hypothesis testing means that a segment will be identified as impaired, and placed in Category 4 or 5, only if substantial amounts of credible evidence exist to refute that presumption. By contrast, making the null hypothesis "WQS not being met" shifts the burden of proof to those who believe the segment is, in fact, meeting WQS.

Which "null hypothesis" a state selects could likely create contrasting incentives regarding support for additional ambient monitoring among different stakeholders. If the null hypothesis is "meeting standards," there were no previous data on the segment, and no additional existing and readily available data and information are collected, then the "null hypothesis" cannot be rejected, and the segment would not be placed in Category 4 or 5. In this situation, those concerned about possible adverse consequences of having a segment declared "impaired" might have little interest in collection of additional ambient data. Meanwhile, users of the segment would likely want to have the segment monitored, so they can be ensured that it is indeed capable of supporting the uses of concern. On the other hand, if the null hypothesis is changed to "segment not meeting WQS," then those that would prefer that a particular segment not be labeled "impaired" would probably want more data collected, in hopes of proving that the null hypothesis is not true.

Another key policy issue in hypothesis testing is what significance level to use in deciding whether to reject the null hypothesis. Picking a high level of significance for rejecting the null hypothesis means that great emphasis is being placed on avoiding a Type I error (rejecting the null hypothesis, when in fact, the null hypothesis is true). This means that if a 0.10 significance level is chosen, the state wants to keep the chance of making a Type I error at or below ten percent. Hence, if the chosen null hypothesis is "segment meeting

An additional policy issue is the Type II errors (not rejecting the null hypothesis, when it should have been). The probability of Type II errors depends on several factors. One key factor is the number of samples available. With a fixed number of samples, as the probability of Type I error decreases, the probability of a Type II error increases. States would ideally collect enough samples so the chances of making Type I and Type II errors are simultaneously small. Unfortunately, resources needed to collect such numbers of samples are quite often not available.

The final example of a policy issue that a state should describe is the rationale for concentrating limited resources to support data collection and statistical analysis in segments where there are documented water quality problems or where the combination of nonpoint source loadings and point source discharges would indicate a strong potential for a water quality problem to exist.

*EPA recommends that, when picking the decision rules and statistical methods to be utilized when interpreting data and information, states attempt to minimize the chances of making either of the two following errors:* 

- Concluding the segment is impaired, when in fact it is not, and
- Deciding not to declare a segment impaired, when it is in fact impaired.

States should specify in their methodology what significance level they have chosen to use, in various circumstances. The methodology would best describe in "plain English" the likelihood of deciding to list a segment that in reality is not impaired (Type I error if the null hypothesis is "segment not impaired"). Also, EPA encourages states to estimate, in their assessment databases, the probability of making a Type II error (not putting on the 303(d) list a segment that in fact fails to meet WQS), when: 1) commonly-available numbers of grab samples are available, and 2) the degree of variance in pollutant concentrations are at commonly encountered levels. For example, if an assessment is being performed with a WQC expressed as a 30-day average concentration of a certain pollutant, it would be useful to estimate the probability of a Type II error when the number of available samples over a 30 day period is equal to the average number of samples for that pollutant in segments state-wide, or in a given group of segments, assuming a degree of variance in levels of the pollutant often observed over typical 30 day periods.

# METHODS FOR ASSESSING COMPLIANCE WITH WATER QUALITY STANDARDS USED FOR 303(d) LISTING PURPOSES: NUMERIC CRITERIA THAT ARE INCLUDED IN STATE WATER QUALITY STANDARDS (10 CSR 20-7.031)

DESIGNATED USES	DATA TYPE	DATA QUALITY CODE	COMPLIANCE WITH WATER QUALITY STANDARDS ⁱ	Notes
Overall use protection (all designated uses)	No data. Evaluated based on similar land use/ geology as stream with water quality data.	Not applicable	Given same rating as monitored stream with same land use and geology.	<b>Data Type Note:</b> This data type is used only for wide-scale assessments of aquatic biota and aquatic habitat for 305(b) Report purposes. This data type is not used in the development of the 303(d) List.
Any designated uses	No data available or where only effluent data is available. Results of dilution calculations or water quality modeling	Not applicable	Where models or other dilution calculations indicate noncompliance with allowable pollutant levels and frequencies noted in this table, waters may be added to Category 3B and considered high priority for water quality monitoring.	
Protection of Aquatic Life	Dissolved oxygen, water temperature, pH, total dissolved gases, oil and grease.	1-4	Full: No more than 10% of all samples exceed criterion.Non-Attainment: Requirements for full attainment not met.Requirements: A minimum sample size of 10 samples during the assessment period (see Section VI above).	Compliance with Water Quality Standards Note: Some sampling periods are wholly or predominantly during the critical period of the year when criteria violations occur. Where the monitoring program presents good evidence of a demarcation between seasons where criteria exceedances occur and seasons where criteria exceedances occur and seasons when they do not, the 10% exceedance rate will be based on an annual estimate of the frequency of exceedance. Continuous (e.g. sonde) data with a quality rating of excellent or good will be used for assessments.
				Chronic pH will be used in the 2018 LMD only if these criteria appear in the Code of State Regulations, and approved by the U.S. Environmental Protection Agency.

# METHODS FOR ASSESSING COMPLIANCE WITH WATER QUALITY STANDARDS USED FOR 303(d) LISTING PURPOSES: NUMERIC CRITERIA THAT ARE INCLUDED IN STATE WATER QUALITY STANDARDS (10 CSR 20-7.031)

DESIGNATED USES	DATA TYPE	DATA QUALITY CODE	COMPLIANCE WITH WATER QUALITY STANDARDS ⁱ	Notes
Losing Streams	<i>E. coli</i> bacteria	1-4	Full: No more than 10% of all samples exceed criterion.Non-Attainment: Requirements for full attainment not met.The criterion for <i>E. coli</i> is 126 counts/100ml. 10 CSR 20-7.031 (4)(C)	
Protection of Aquatic Life	Toxic chemicals	1-4	Full: No more than one acute toxic event in three years that results in a documented die- off of aquatic life such as fish, mussels, and crayfish (does not include die-offs due to natural origin). No more than one exceedance of acute or chronic criterion in the last three years for which data is available.Non-Attainment: attainment not met.	Compliance with Water Quality Standards Note: For hardness based metals with eight or fewer samples, the hardness value associated with the sample will be used to calculate the acute or chronic thresholds. For hardness based metals with more than eight samples, the hardness definition provided in state water quality standards will be used to calculate the acute and chronic thresholds.
Protection of Aquatic Life	Nutrients in Lakes (total phosphorus, total nitrogen, plus chlorophyll)	1-4	Full: Nutrient levels do not exceed water quality standards following procedures stated in Appendix D.Non-Attainment: Requirements for full attainment not met.	<b>Compliance with Water Quality Standards</b> <b>Note:</b> Nutrient criteria will be used in the 2020 LMD only if these criteria appear in the Code of State Regulations, and approved by the U.S. Environmental Protection Agency.
Human Health - Fish Consumption	Chemicals (water)	1-4	Full: Water quality does not exceed water quality standards following procedures stated in Appendix D.Non-Attainment: Requirements for full attainment not met.	



# METHODS FOR ASSESSING COMPLIANCE WITH WATER QUALITY STANDARDS USED FOR 303(d) LISTING PURPOSES: NUMERIC CRITERIA THAT ARE INCLUDED IN STATE WATER QUALITY STANDARDS (10 CSR 20-7.031)

DESIGNATED USES	DATA TYPE	DATA QUALITY CODE	COMPLIANCE WITH WATER QUALITY STANDARDS ⁱ	Notes
Drinking Water Supply -Raw Water.	Chemical (toxics)	1-4	<u>Full</u> : Water Quality Standards not exceeded following procedures stated in Appendix D. <u>Non-Attainment</u> : Requirements for full attainment not met.	<b>Designated Use Note:</b> Raw water is water from a stream, lake or groundwater prior to treatment in a drinking water treatment plant.
Drinking Water Supply- Raw Water	Chemical (sulfate, chloride, fluoride)	1-4	<u>Full</u> : Water quality standards not exceeded following procedures stated in Appendix D. <u>Non-Attainment</u> : Requirements for full attainment not met.	
Drinking Water Supply-Finished Water	Chemical (toxics)	1-4	Full: No Maximum Contaminant Level (MCL) violations based on Safe Drinking Water Act data evaluation procedures.Non-Attainment: Requirements for full attainment not met.	<b>Compliance with Water Quality Standards</b> <b>Note:</b> Finished water data will not be used for analytes where water quality problems may be caused by the drinking water treatment process such as the formation of Trihalomethanes (THMs) or problems that may be caused by the distribution system (bacteria, lead, copper).
Whole-Body- Contact Recreation and Secondary Contact Recreation	Fecal coliform or <i>E. coli</i> count	2-4	Where there are at least five samples per year taken during the recreational season: <u>Full</u> : Water quality standards not exceeded as a geometric mean, in any of the last three years for which data is available, for samples collected during seasons for which bacteria criteria apply. <u>Non-Attainment</u> : Requirements for full attainment not met.	<b>Compliance with Water Quality Standards</b> <b>Note:</b> A geometric mean of 206 cfu/100 ml for <i>E. coli</i> will be used as a criterion value for Category B Recreational Waters. Because Missouri's Fecal Coliform Standard ended December 31, 2008, any waters appearing on the 2008 303(d) List as a result of the Fecal Coliform Standard will be retained on the list with the pollutant listed as "bacteria" until sufficient <i>E. coli</i> sampling has determined the status of the water.
Irrigation, Livestock and	Chemical	1-4	<u>Full</u> : Water quality standards not exceeded following procedures stated in Appendix D.	

# METHODS FOR ASSESSING COMPLIANCE WITH WATER QUALITY STANDARDS USED FOR 303(d) LISTING PURPOSES: NUMERIC CRITERIA THAT ARE INCLUDED IN STATE WATER QUALITY STANDARDS (10 CSR 20-7.031)

WS #6.

DESIGNATED USES	DATA TYPE	DATA QUALITY CODE	COMPLIANCE WITH WATER QUALITY STANDARDS ⁱ	Notes
Wildlife Water			Non-Attainment: Requirements for full attainment not met.	

ⁱ See section on Statistical Considerations, Appendix C & D.

#### METHODS FOR ASSESSING COMPLIANCE WITH WATER QUALITY STANDARDS USED FOR 303(d) LISTING PURPOSES: NARRATIVE CRITERIA BASED ON NUMERIC THRESHOLDS NOT CONTAINED IN STATE WATER OUALITY STANDARDS (10 CSR 20-7.031)

BENEFICIAL USES	DATA TYPE	DATA QUALITY CODE	COMPLIANCE WITH WATER QUALITY STANDARDS ⁱⁱ	Notes
Overall use protection (all beneficial uses)	Narrative criteria for which quantifiable measurement s can be made.	1-4	Full: Stream condition typical of reference or appropriate control streams in this region of the state.Non-Attainment: The weight of evidence, based on the narrative criteria in 10 CSR 20-7.031(3), demonstrates the observed condition exceeds a numeric threshold necessary for the attainment of a beneficial use.For example: Color: Color as measured by the Platinum-Cobalt visual method (SM 2120 B) in a water body is statistically significantly higher than a control water.Objectionable Bottom Deposits: The bottom that is covered by sewage sludge, trash, or other materials reaching the water due to anthropogenic sources exceeds the amount in reference or control streams by more than 20 percent.Note: Waters in mixing zones and unclassified waters that support aquatic life on an intermittent basis shall be subject to acute toxicity criteria for protection of aquatic life. Waters in the initial Zone of Dilution shall not be subject to acute toxicity criteria.	
Protection of Nutrient Criteria Imp	Toxic	1-4	<u>Full</u> : No more than one acute toxic event	Compliance with Water Quality Standards Note: The test

#### METHODS FOR ASSESSING COMPLIANCE WITH WATER QUALITY STANDARDS USED FOR 303(d) LISTING PURPOSES: NARRATIVE CRITERIA BASED ON NUMERIC THRESHOLDS NOT CONTAINED IN STATE WATER OUALITY STANDARDS (10 CSR 20-7.031)

BENEFICIAL	DATA	DATA	COMPLIANCE WITH WATER	Notes
USES	TYPE	QUALITY CODE	QUALITY STANDARDS ⁱⁱ	
Aquatic Life	Chemicals		in three years (does not include die-offs of aquatic life due to natural origin). No more than one exceedance of acute or chronic criterion in three years for all toxics. <u>Non-Attainment</u> : Requirements for full attainment not met.	result must be representative of water quality for the entire time period for which acute or chronic criteria apply. For ammonia the chronic exposure period is 30 days, for all other toxics 96 hours. The acute exposure period for all toxics is 24 hours, except for ammonia which has a one hour exposure period. The department will review all appropriate data, including hydrographic data, to ensure only representative data are used. Except on large rivers where storm water flows may persist at relatively unvarying levels for several days, grab samples collected during storm water flows will not be used for assessing chronic toxicity criteria.
				<b>Compliance with Water Quality Standards Note:</b> In the case of toxic chemicals occurring in benthic sediment rather than in water, the numeric thresholds used to determine the need for further evaluation will be the Probable Effect Concentrations proposed in "Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems" by MacDonald, D.D. <i>et al.</i> Arch. Environ. Contam. Toxicol. 39,20-31 (2000). These Probable Effect Concentrations are as follows: 33 mg/kg As; 4.98 mg/kg Cd; 111 mg/kg Cr; 149 mg/kg Cu; 48.6 mg/kg Ni; 128 mg/kg Pb; 459 mg/kg Zn; 561 µg/kg naphthalene; 1170 µg/kg phenanthrene; 1520 µg/kg pyrene; 1050 µg/kg benzo(a)anthracene, 1290 µg/kg total polycyclic aromatic hydrocarbons; 676 µg/kg total PCBs; chlordane 17.6 ug/kg; Sum DDE 31.3 ug/kg; lindane (gamma-BHC) 4.99 ug/kg. Where multiple sediment contaminants exist, the Probable Effect Concentrations Quotient shall not exceed 0.75. See Appendix D and Section II. D for more information on the Probable Effect Concentrations Quotient.

#### METHODS FOR ASSESSING COMPLIANCE WITH WATER QUALITY STANDARDS USED FOR 303(d) LISTING PURPOSES: NARRATIVE CRITERIA BASED ON NUMERIC THRESHOLDS NOT CONTAINED IN STATE WATER QUALITY STANDARDS (10 CSR 20-7.031)

BENEFICIAL USES	DATA TYPE	DATA QUALITY CODE	COMPLIANCE WITH WATER QUALITY STANDARDS ⁱⁱ	Notes
Protection of Aquatic Life	Biological: Aquatic Macro- invertebrates sampled using DNR Protocol.	3-4	<u>Full</u> : For seven or fewer samples and following DNR wadeable streams macroinvertebrate sampling and evaluation protocols, 75% of the stream condition index scores must be 16 or greater. Fauna achieving these scores are considered to be very similar to regional reference streams. For greater than seven samples or for other sampling and evaluation protocols, results must be statistically similar to representative reference or control stream. <u>Non-Attainment</u> : For seven or fewer samples and following DNR wadeable streams macroinvertebrate sampling and evaluation protocols, 75% of the stream condition index scores must be 14 or lower. Fauna achieving these scores are considered to be substantially different from regional reference streams. For more than seven samples or for other sampling and evaluation protocols, results must be statistically dissimilar to control or representative reference streams.	<ul> <li>Data Type Note: DNR invert protocol will not be used for assessment in the Mississippi Alluvial Basin (bootheel area) due to lack of reference streams for comparison.</li> <li>Data Type Note: See Section II.D. for additional criteria used to assess biological data.</li> <li>Compliance with Water Quality Standards Note: See Appendix D. For test streams that are significantly smaller than bioreference streams where both bioreference streams and small candidate reference streams are used to assess the biological integrity of the test stream, the assessment of the data should display and take into account both biocriteria reference streams and candidate reference streams.</li> </ul>
Protection of Aquatic Life	Biological: MDC Fish Community (RAM) Protocol (Ozark Plateau only)	3-4	<u>Full:</u> For seven or fewer samples and following MDC RAM fish community protocols, 75% of the fIBI scores must be 36 or greater. Fauna achieving these scores are considered to be very similar to regional reference streams. For greater than seven samples or for other sampling	<ul> <li>Data Type Note: See Section II.D. for additional criteria used to assess biological data.</li> <li>Compliance with Water Quality Standards Note: MDC fIBI scores are from "Biological Criteria for Streams and Fish Communities in Missouri" by Doisy et al. (2008). If habitat limitations (as measured by either the QCPH1 index or other appropriate methods) are judged to contribute to low fish</li> </ul>

#### METHODS FOR ASSESSING COMPLIANCE WITH WATER QUALITY STANDARDS USED FOR 303(d) LISTING PURPOSES: NARRATIVE CRITERIA BASED ON NUMERIC THRESHOLDS NOT CONTAINED IN STATE WATER QUALITY STANDARDS (10 CSR 20-7.031)

BENEFICIAL USES	DATA TYPE	DATA QUALITY CODE	COMPLIANCE WITH WATER QUALITY STANDARDS ⁱⁱ	Notes
			and evaluation protocols, results must be statistically similar to representative reference or control streams. Suspected of Impairment: Data not	community scores and this is the only type of data available, the water body will be included in Category 4C, 2B, or 3B. If other types of data exist, the weight of evidence approach will be used as described in this document.
			conclusive (Category 2B or 3B). For firstand second order streams fIBI score <	<ul> <li>Compliance with Water Quality Standards Note: For determining influence of poor habitat on those samples that are deemed as impaired, consultation with MDC RAM staff will be utilized. If, through this consultation, habitat is determined to be a significant possible cause for impairment, the water body will not be rated as impaired, but rather as suspect of impairment (categories 2B or 3B).</li> <li>Compliance with Water Quality Standards Note: See Appendix D. For test streams that are significantly smaller than bioreference streams where both bioreference streams and small candidate reference streams are used to assess the biological integrity of the test stream, the assessment of the data should display and take into account both biocriteria reference streams and candidate reference streams.</li> </ul>
Protection of Aquatic Life	Other Biological Data	3-4	Full:       Results must be statistically similar to representative reference or control streams. <u>Non-Attainment:</u> Results must be statistically dissimilar to control or representative reference streams.	<b>Data Type Note:</b> See Section II.D. for additional criteria used to assess biological data



#### METHODS FOR ASSESSING COMPLIANCE WITH WATER QUALITY STANDARDS USED FOR 303(d) LISTING PURPOSES: NARRATIVE CRITERIA BASED ON NUMERIC THRESHOLDS NOT CONTAINED IN STATE WATER OUALITY STANDARDS (10 CSR 20-7.031)

BENEFICIAL	DATA	DATA	COMPLIANCE WITH WATER	Notes
USES	TYPE	QUALITY CODE	QUALITY STANDARDS ⁱⁱ	
Protection of Aquatic Life Human Health	Toxicity testing of streams or lakes using aquatic organisms Chemicals	2	Full: No more than one test result of statistically significant deviation from controls in acute or chronic test in a three-year period.Non-Attainment: Requirements for full attainment not met.Full: Contaminant levels in fish tissue	Compliance with Water Quality Standards Note: Fish tissue
- Fish Consumption	(tissue)	1-2	<u>Pun</u> . Containinant levels in fish tissue levels in fillets, tissue plugs, and eggs do not exceed guidelines. <u>Non-Attainment</u> : Requirements for full attainment not met.	<b>Compliance with water Quarty Standards</b> Note. Fish tissue threshold levels are; chlordane 0.1 mg/kg (Crellin, J.R. 1989, <i>"New Trigger Levels for Chlordane in Fish-Revised Memo"</i> Mo. Dept. of Health inter-office memorandum. June 16, 1989); mercury 0.3 mg/kg based on "Water Quality Criterion for Protection of Human Health: Methylmercury" EPA-823-R-01-001. Jan. 2001. http://www.epa.gov/waterscience/criteria/methylmercury/merctitl. pdf; PCBs 0.75 mg/kg, MDHSS Memorandum August 30, 2006 <i>"Development of PCB Risk-based Fish Consumption Limit Tables;"</i> and lead 0.3- mg/kg (World Health Organization 1972. <i>"Evaluation of Certain Food Additives and the Contaminants Mercury, Lead and Cadmium."</i> WHO Technical Report Series No. 505, Sixteenth Report on the Joint FAO/WHO Expert Committee on Food Additives. Geneva 33 pp. Assessment of Mercury will be based on samples solely from the following higher trophic level fish species: Walleye, Sauger, Trout, Black Bass, White Bass, Striped Bass, Northern Pike, Flathead Catfish and Blue Catfish. In a 2012 DHSS memorandum (not yet approved, but are being considered for future LMD revisions) threshold values are proposed to change as follows: chlordane 0.2 mg/kg ; mercury 0.27 mg/kg ; and PCBs = 0.540 ; lead has not changed, but they do add atrazine and PDBEs (Fish Fillet Advisory Concentrations (FFACs) in Missouri).

ⁱⁱ See section on Statistical Considerations and Appendix D.

DESCRIPTION OF ANALYTICAL TOOLS USED FOR DETERMINING THE STATUS OF MISSOURI WATERS (11" X 14" FOLD OUT)

			Determini	ing when waters are i	mpaired	Determining when waters are no longer impaired			
Designated Use	Analytes	Analytical Tool	Decision Rule/ Hypothesis	Criterion Used with the Decision Rule ⁱⁱⁱ	Significance Level (a)	Decision Rule/ Hypothesis	Criterion Used with the Decision Rule	Significance Level (α)	Notes
Narrative Criteria	Color	Hypothesis Test: Two Sample, one tailed t-Test	Null Hypothesis: There is no difference in color between test stream and control stream.	Reject Null Hypothesis if calculated "t" value exceeds tabular "t" value for test alpha	0.1	Same Hypothesis	Same Criterion	Same Significance Level	
	Bottom deposits	Hypothesis Test, Two Sample, one tailed "t "Test	Null Hypothesis: Solids of anthropogenic origin cover less than 20% of stream bottom where velocity is less than 0.5 feet/second.	Reject Null Hypothesis if 60% Lower Confidence Limit (LCL) of mean percent fine sediment deposition (pfsd) in stream is greater than the sum of the pfsd in the control and 20 % more of the stream bottom. i.e., where the pfsd is expressed as a decimal, test stream pfsd > (control stream pfsd)+(0.20)	0.4	Same Hypothesis	Same Criterion	Same Significance Level	<b>Criterion Note:</b> If data is non-normal a nonparametric test will be used as a comparison of medians. The same 20% difference still applies. With current software the Mann- Whitney test is used.

DESCRIPTION OF ANALYTICAL TOOLS USED FOR DETERMINING THE STATUS OF MISSOURI WATERS (11" X 14" FOLD OUT)

			Determining when waters are impaired Determining when waters are no longer impaired				nger impaired		
Designated Use	Analytes	Analytical Tool	Decision Rule/ Hypothesis	Criterion Used with the Decision Rule ⁱⁱⁱ	Significance Level (a)	Decision Rule/ Hypothesis	Criterion Used with the Decision Rule	Significance Level (a)	Notes
Aquatic Life	Biological monitoring (Narrative)	For DNR Invert protocol: Sample sizes of 7 or less, 75% of samples must score 14 or lower. For RAM Fish IBI protocol: Sample sizes of 7 or less, 75% of samples must score less than 36.	Using DNR Invert. Protocol: Null Hypothesis: Frequency of full sustaining scores for test stream is the same as for biological criteria reference streams.	Reject Null Hypothesis if frequency of fully sustaining scores on test stream is significantly less than for biological criteria reference streams.	Not Applicable	Same Hypothesis	Same Criterion	Same Significance Level	
		For DNR Invert protocol and sample size of 8 or more: Binomial Probability For RAM Fish IBI protocol and sample size of 8 or more: Binomial Probability.	A direct comparison of frequencies between test and biological criteria reference streams will be made.	Rate as impaired if biological criteria reference stream frequency of fully biologically supporting scores is greater than five percent more than test stream.	0.1	Same Hypothesis	Same Criterion	Same Significance Level	<b>Criterion Note:</b> For inverts, the reference number will change depending on which EDU the stream is in (X%-5%), for RAM samples the reference number will always be 70 (75%-5%).
		For other biological data an appropriate parametric or	Null Hypothesis, Community metric(s) in	Reject Null Hypothesis if metric scores for test stream are	0.1	Same Hypothesis	Same Criterion	Same Significance Level	

DESCRIPTION OF ANALYTICAL TOOLS USED FOR DETERMINING THE STATUS OF MISSOURI WATERS (11" X 14" FOLD OUT)

			Determini	ng when waters are i	mpaired	Determining w	hen waters are no lo	nger impaired	
Designated Use	Analytes	Analytical Tool	Decision Rule/ Hypothesis	Criterion Used with the Decision Rule ⁱⁱⁱ	Significance Level (α)	Decision Rule/ Hypothesis	Criterion Used with the Decision Rule	Significance Level (α)	Notes
Aquatic Life (cont.)		nonparametric test will be used.	test stream is the same as for a reference stream or control streams.	significantly less than reference or control streams.					
			Other biological monitoring to be determined by type of data.	Dependent upon available information.	Dependent upon available information.	Same Hypothesis	Same Criterion	Same Significance Level	
	Toxic chemicals in water: (Numeric)	Not applicable	No more than one toxic event, toxicity test failure or exceedance of acute or chronic criterion in 3 years.	Not applicable	Not applicable	Same Hypothesis	Same Criterion	Same Significance Level	
	Toxic chemicals in sediments: (Narrative)	Comparison of geometric mean to PEC value, or calculation of a PECQ value.	Waters are judged to be impaired if parameter geomean exceeds PEC, or site PECQ is exceeded.	For metals use 150% PEC threshold. The PECQ threshold value is 0.75.	Not applicable	Water is judged to be unimpaired if parameter geomean is equal to or less than PEC, or site PECQ equaled or not exceeded.	For metals use 150% of PEC threshold. The PECQ threshold value is 0.75.	Not applicable	<b>Compliance with Water Quality Standards</b> <b>Note:</b> In the case of toxic chemicals occurring in benthic sediment rather than in water, the numeric thresholds used to determine the need for further evaluation will be the Probable Effect Concentrations proposed in "Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems" by MacDonald, D.D. <i>et al.</i> Arch. Environ. Contam. Toxicol. 39,20-31 (2000). These Probable Effect Concentrations are as follows:

DESCRIPTION OF ANALYTICAL TOOLS USED FOR DETERMINING THE STATUS OF MISSOURI WATERS (11" X 14" FOLD OUT)

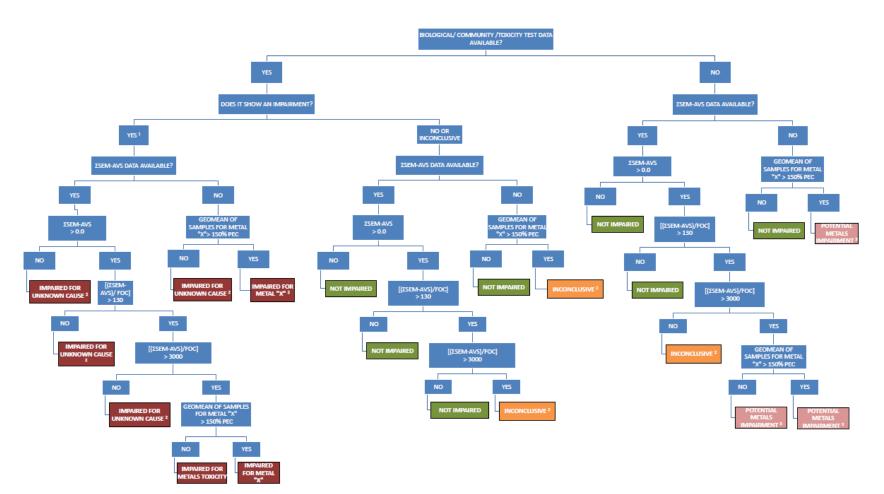
			Determini	ng when waters are i	impaired	Determining when waters are no longer impaired			
Designated Use	Analytes	Analytical Tool	Decision Rule/ Hypothesis	Criterion Used with the Decision Rule ⁱⁱⁱ	Significance Level (a)	Decision Rule/ Hypothesis	Criterion Used with the Decision Rule	Significance Level (a)	Notes
Aquatic Life (cont.)	Temperatu re, pH, total diss. gases, oil and grease, diss. oxygen (Numeric)	Binomial probability	Null Hypothesis: No more than 10% of samples exceed the water quality criterion.	Reject Null Hypothesis if the Type I error rate is less than 0.1.	Not applicable	Same Hypothesis	Same Criterion	Same Significance Level	33 mg/kg As; 4.98 mg/kg Cd; 111 mg/kg Cr; 149 mg/kg Cu; 48.6 mg/kg Ni; 128 mg/kg Pb; 459 mg/kg Zn; 561 $\mu$ g/kg naphthalene; 1170 $\mu$ g/kg phenanthrene; 1520 $\mu$ g/kg pyrene; 1050 $\mu$ g/kg benzo(a)anthracene, 1290 $\mu$ g/kg chrysene; 1450 $\mu$ g/kg benzo(a)pyrene; 22,800 $\mu$ g/kg total polycyclic aromatic hydrocarbons; 676 $\mu$ g/kg total PCBs; chlordane 17.6 ug/kg; Sum DDE 31.3 ug/kg; lindane (gamma-BHC) 4.99 ug/kg. Where multiple sediment contaminants exist, the Probable Effect Concentrations Quotient shall not exceed 0.75. See Appendix D and Section II. D for more information on the Probable Effect Concentrations Quotient. Continuous Sampling (i.e. time series or sonde data collection): Data collected in a time series fashion will be looked at on a 4 day period. If an entire 4 day period is outside of the 6.5 – 9.0 criterion range that will count as a chronic toxicity event. More than one of these events will constitute an impairment listing of the stream. Grab Samples: Data collected as grab samples will be treated as is and the binomial probability calculation will be used for assessment.

#### Appendix D

DESCRIPTION OF ANALYTICAL TOOLS USED FOR DETERMINING THE STATUS OF MISSOURI WATERS (11" X 14" FOLD OUT)

			Determini	ing when waters are i	mpaired	Determining wl	hen waters are no lo	nger impaired	
Designated Use	Analytes	Analytical Tool	Decision Rule/ Hypothesis	Criterion Used with the Decision Rule ⁱⁱⁱ	Significance Level (a)	Decision Rule/ Hypothesis	Criterion Used with the Decision Rule	Significance Level (α)	Notes
Losing Streams	E.coli	Binomial probability	Null Hypothesis: No more than 10% of samples exceed the water quality criterion.	Reject Null Hypothesis if the Type I error rate is less than 0.1.	0.1	Same Hypothesis	Same Criterion	Same Significance Level	
Human Health – Fish Consumption	Toxic chemicals in water (Numeric)	Hypothesis test: 1-sided confidence limit	Null Hypothesis: Levels of contaminants in water do not exceed criterion.	Reject Null Hypothesis if the 60% LCL is greater than the criterion value.	0.4	Same Hypothesis	Reject Null Hypothesis if the 60% UCL is greater than the criterion value.	Same Significance Level	
	Toxic chemicals in tissue (Narrative)	Four or more samples: Hypothesis test 1-sided confidence limit	Null Hypothesis: Levels in fillet samples or fish eggs do not exceed criterion.	Reject Null Hypothesis if the 60% LCL is greater than the criterion value.	0.4	Same Hypothesis	Reject null hypothesis if the 60% UCL is greater than the criterion value.	Same Significance Level	
Drinking Water Supply (Raw)	Toxic chemicals (Numeric)	Hypothesis test: 1-sided confidence limit	Null Hypothesis: Levels of contaminants do not exceed criterion.	Reject Null Hypothesis if the 60% LCL is greater than the criterion value.	0.4	Same Hypothesis	Reject null hypothesis if the 60% UCL is greater than the criterion value.	Same Significance Level	

#### Appendix D

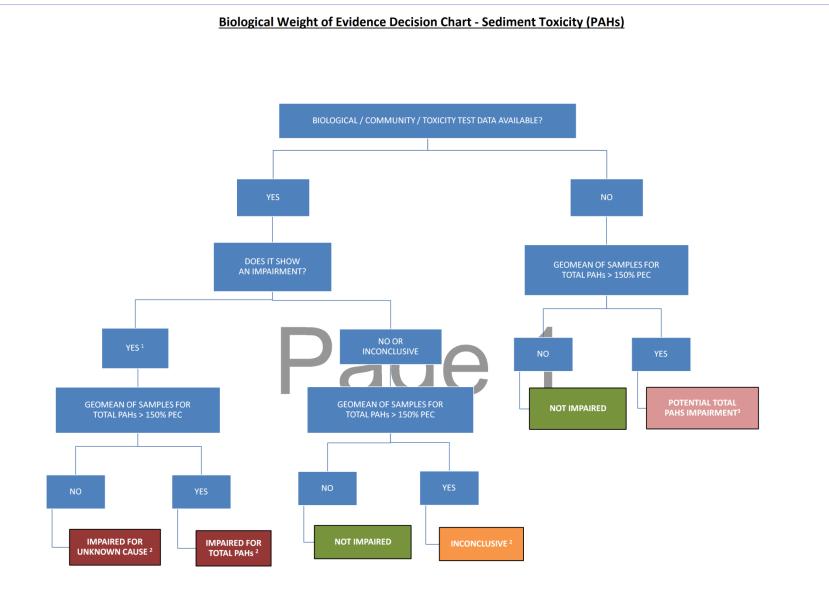

DESCRIPTION OF ANALYTICAL TOOLS USED FOR DETERMINING THE STATUS OF MISSOURI WATERS (11" X 14" FOLD OUT)

			Determini	ing when waters are i	mpaired	Determining w	hen waters are no lo	nger impaired	
Designated Use	Analytes	Analytical Tool	Decision Rule/ Hypothesis	Criterion Used with the Decision Rule ⁱⁱⁱ	Significance Level (a)	Decision Rule/ Hypothesis	Criterion Used with the Decision Rule	Significance Level (a)	Notes
	Non-toxic chemicals (Numeric)	Hypothesis test: 1-sided confidence limit	Null Hypothesis: Levels of contaminants do not exceed criterion.	Reject Null Hypothesis: if the 60% LCL is greater than the criterion value.	0.4	Same Hypothesis	Reject null hypothesis if the 60% UCL is greater than the criterion value.	Same Significance Level	
Drinking Water Supply (Finished)	Toxic chemicals	Methods stipulated by Safe Drinking Water Act.	Methods stipulated by Safe Drinking Water Act.	Methods stipulated by Safe Drinking Water Act.	Methods stipulated by Safe Drinking Water Act.	Same Hypothesis	Same Criterion	Same Significance Level	
Whole Body Contact and Secondary	Bacteria (Numeric)	Geometric mean	Null Hypothesis: Levels of contaminants do not exceed criterion.	Reject Null Hypothesis: if the geometric mean is greater than the criterion value.	Not Applicable	Same Hypothesis	Same Criterion	Not applicable	
Irrigation & Livestock Water	Toxic chemicals (Numeric)	Hypothesis test 1-Sided confidence limit	Null Hypothesis: Levels of contaminants do not exceed criterion.	Reject Null Hypothesis if the 60% LCL is greater than the criterion value.	0.4	Same Hypothesis	Reject null hypothesis if the 60% UCL is greater than the criterion value.	Same Significance Level	
Protection of Aquatic Life	Nutrients in lakes (Numeric)	Hypothesis test	Null hypothesis: Criteria are not exceeded.	Reject Null Hypothesis if 60% LCL value is greater than criterion value.	0.4	Same Hypothesis	Same Criterion	Same Significance Level	<b>Hypothesis Test Note:</b> State nutrient criteria require at least four samples per year taken near the outflow point of the lake (or reservoir) between May 1 and August 31 for at least four different, not necessarily consecutive, years.

ⁱⁱⁱ Where hypothesis testing is used for media other than fish tissue, for data sets with five samples or fewer, a 75 percent confidence interval around the appropriate central tendencies will be used to determine use attainment status. Use attainment will be determined as follows: (1) If the criterion value is above this interval (all values within the interval are in conformance with the criterion), rate as unimpaired; (2) If the criterion value falls within this interval, rate as unimpaired and place in Category 2B or 3B; (3) If the criterion value is below this interval (all values within the interval are not in conformance with the criterion), rate as impaired. For fish tissue, this procedure will be used with the following changes: (1) it will apply only to sample sizes of less than four and, (2) a 50% confidence interval will be used in place of the 75% confidence interval.

#### Appendix E PICTORIAL REPRESENTATIONS OF THE WEIGHT OF EVIDENCE PROCEDURE FOR JUDGING TOXICITY OF SEDIMENT DUE TO METALS AND PAHS






#### Notes:

- 1 If there are Numeric WQS violations (unrelated to sediment) then follow LMD Procedure in LMD Appendix B. Do Not Continue.
- 2 Note waterbody for further investigation related to metals or habitat issues.

Nutrient Criteria Implementation Plan

Missouri Department of Natural Resources, Water Protection Program



#### Notes:

1 - If there are Numeric WQS violations (unrelated to sediment) then follow LMD Procedure in LMD Appendix B. Do Not Continue.

2 - Note waterbody for further investigation.

3 - Note waterbody for Biological Sampling.

Nutrient Criteria Implementation Plan Missouri Department of Natural Resources, Water Protection Program

## Sugar Creek Lake Future

WS #6.

BARR

City of Moberly

Mary West-Calcagno – City of Moberly Andrea Collier, PE – Barr Engineering

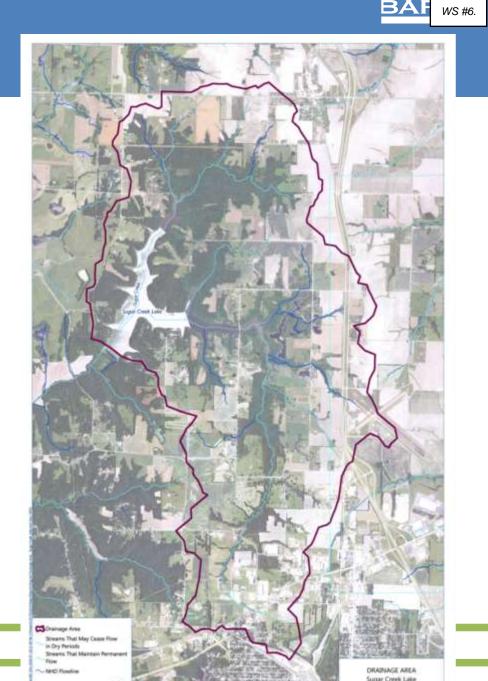
## Sugar Creek Lake Future

### City of Moberly

**Draft Lake Plan can be viewed online at:** 

https://cityofmoberly.com/DocumentCenter/View/933/DRAFT_ Sugar-Creek-Lake-SWPP-3-3-2020-Public-Notice-Copy




WS #6.

## Concerns at Sugar Creek Lake

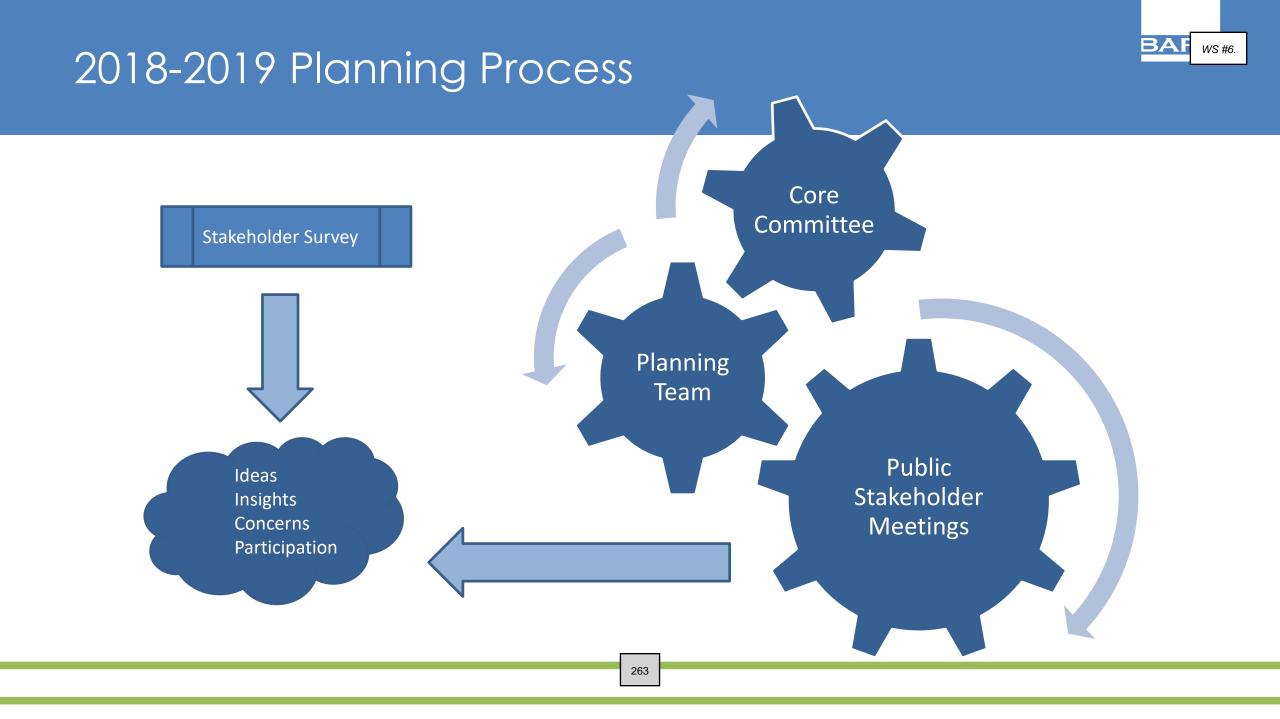
- City's sole source of drinking water
- Loss of lake storage volume for water supply
- Erosion
- Sediment loading
- Nutrient loading Phosphorus and Nitrogen

260

• Algae blooms



## Challenges with Water Treatment

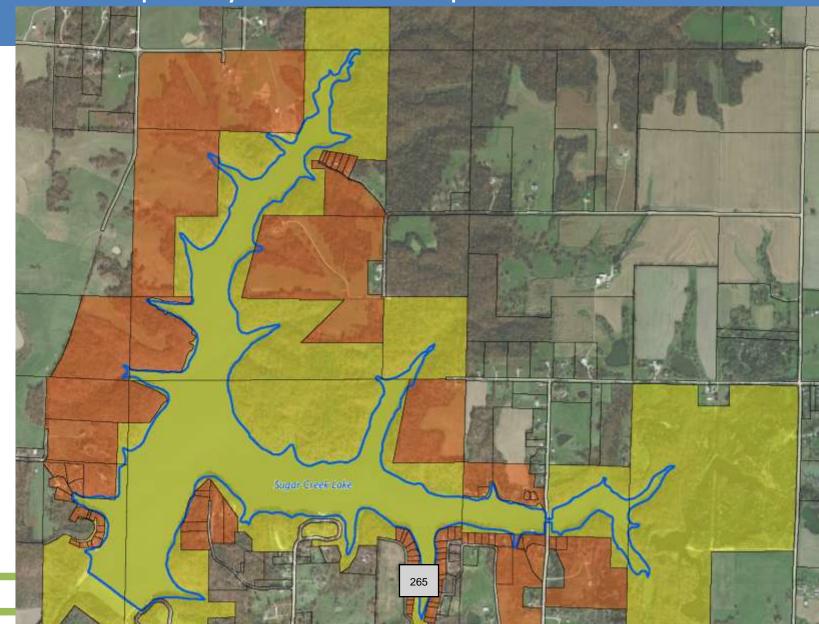



- 2001 disinfection byproducts study indicated additional treatment required to remove organics
- Plant upgrade in 2007-2008
- Switched disinfectant in 2008
- Occasionally have treatment challenges

## Source Water Protection Grant

- Administered by Missouri DNR, Public Drinking Water Branch
- Provided funding aligned with these goals:
  - Promote source water protection awareness, education, and implementation
  - Encourage local planning to protect and enhance water supply
  - Support practices that improve drinking water source quality

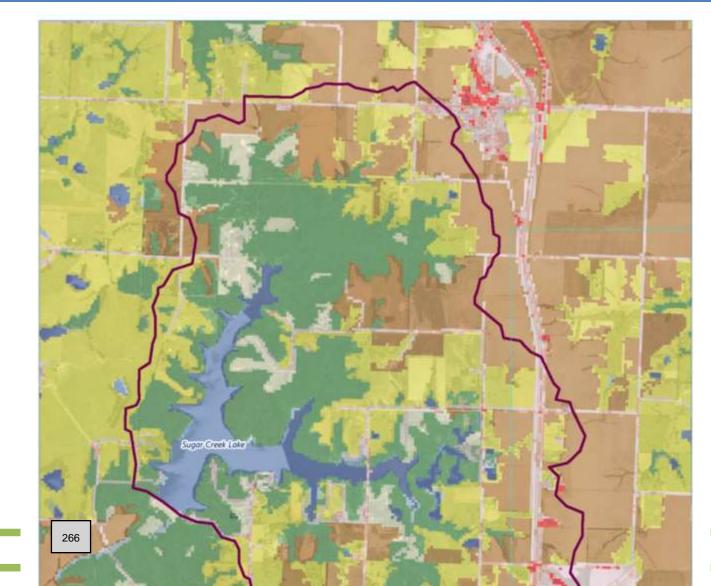





## Stakeholder Input and Concerns

- Why is it important?
- Sources of pollution in the watershed
- What does the data mean?
- Who needs to be informed?
- What are the main issues?
- How can we begin to address the issues?
- Who will pay for solutions?




## Lakeshore Property Ownership





## Sugar Creek Lake Watershed Land Use

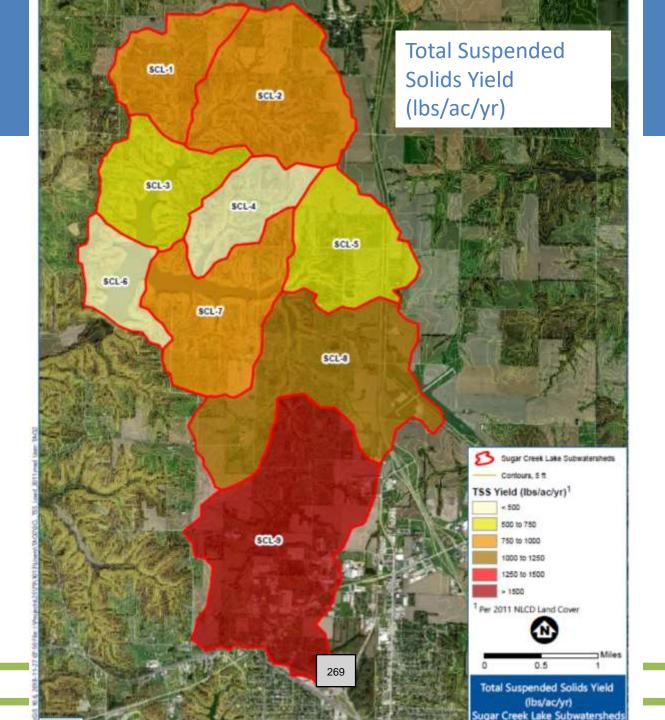
- 7,000 acres in the watershed, 322 acre lake surface area
- Land use varies, bulk is rural with:
  - -29% pasture/hay
  - -24% cultivated crops
  - -24% forested land
  - -23% water, residential,
  - light industrial, and roads



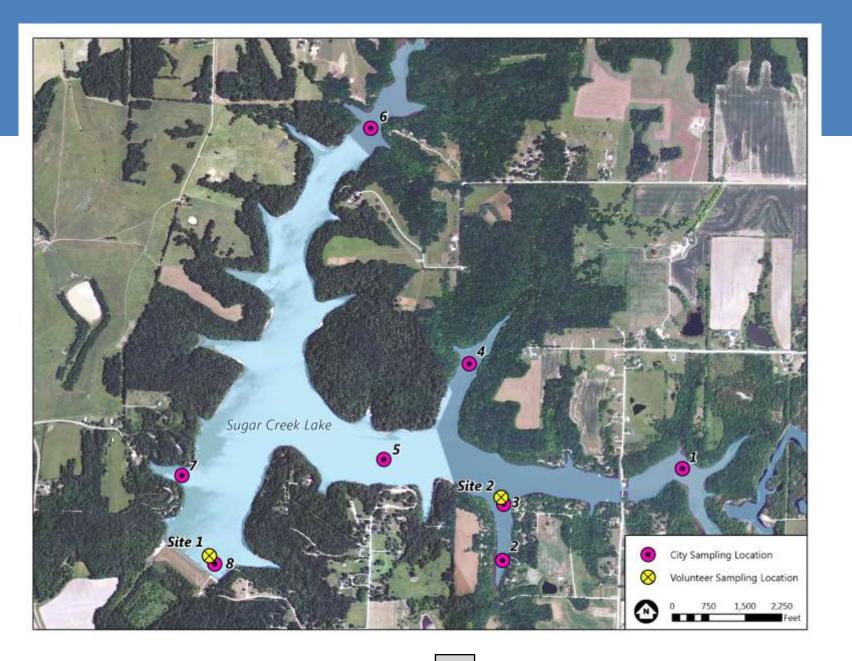


## **Questions?**

**Draft Lake Plan can be viewed online at:** 


https://cityofmoberly.com/DocumentCenter/View/933/DRAFT_ Sugar-Creek-Lake-SWPP-3-3-2020-Public-Notice-Copy

## National Land Cover Data Analysis


- Delineated nine sub-watersheds
- Reviewed and applied loading rates, per acre per year based on land use types (using 2011 NLCD)

WS #6.

- Total Nitrogen
- Total Phosphorus
- Total Suspended Solids
- Created maps to show most recent data geographically
- Completed a change analysis, compared 2011 to 2001 data



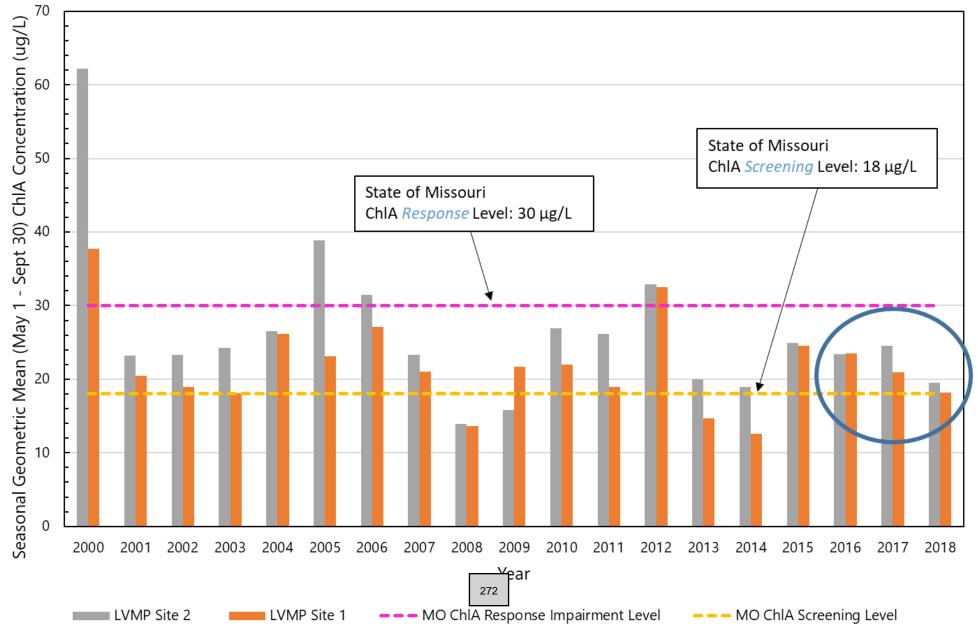




BAF WS #6.

## Missouri Lake Nutrient Criteria 10 CSR 20-7.031(5)(N)



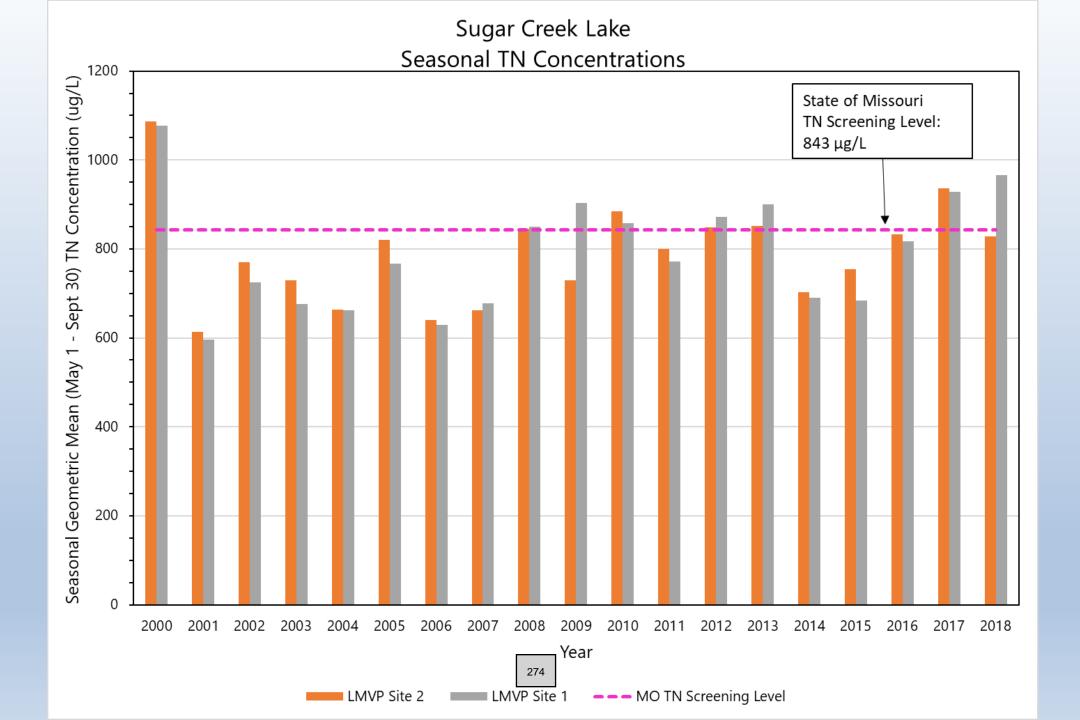

# Lake EcoregionChl-a Response Impairment ThresholdsPlains30Ozark Border22Ozark Highland15

#### Table L: Lake Ecoregion Chl-a Response Impairment Threshold Values (µg/L)

#### Table M: Lake Ecoregion Nutrient Screening Threshold Values (µg/L)

Laka Econorian	Nutrient Screening Thresholds						
Lake Ecoregion	TP	TN	Chl-a				
Plains	49	843	18				
Ozark Border	40	733	13				
Ozark Highland	16	401	6				

#### Sugar Creek Lake Seasonal ChIA Concentrations




BARR

## BAF WS #6.


## Nutrient screening threshold 10 CSR 20-7.031(5)(N)

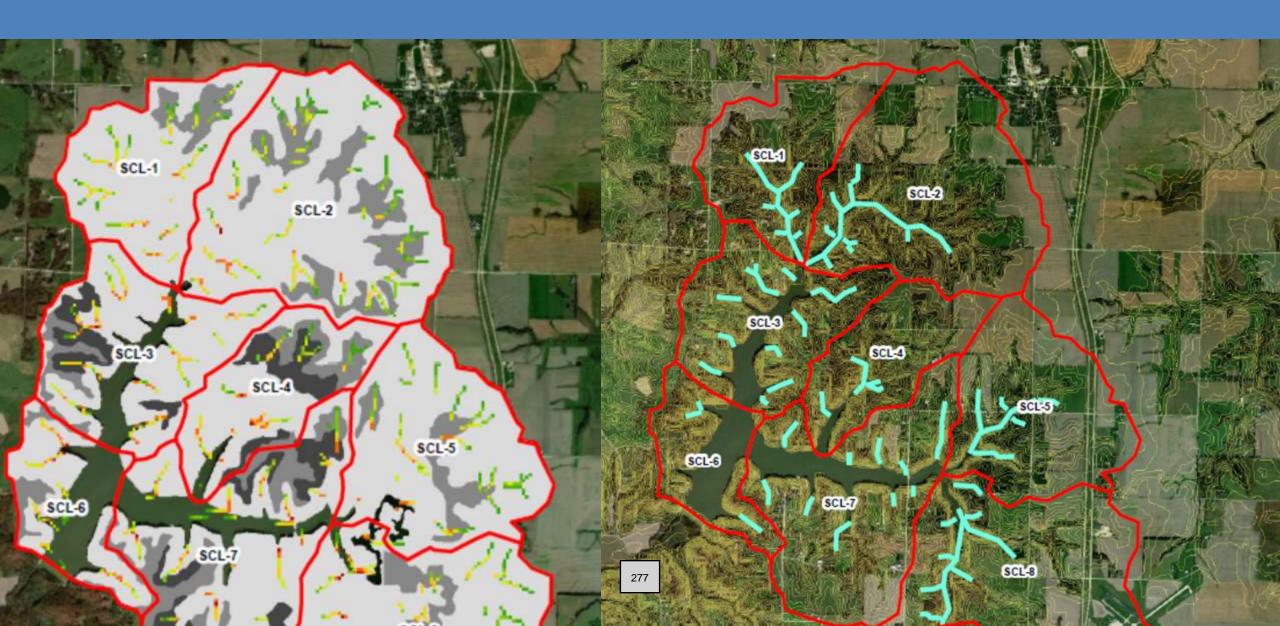
- If the annual geometric mean of Chl-a, TN or TP exceeds the nutrient screening threshold, then the response assessment endpoints will be evaluated
- Response assessment endpoints include:
  - 1. Occurrence of mortality events for fish and other aquatic organisms
  - 2. Excursions (> 10% of samples) from dissolved oxygen or pH criteria
  - 3. Cyanobacteria counts in excess of 100,000 cells/mL
  - 4. Observed shifts in aquatic diversity
  - 5. Excessive levels of mineral turbidity that consistently limit algal productivity during the period of May 1 September 30



BARR

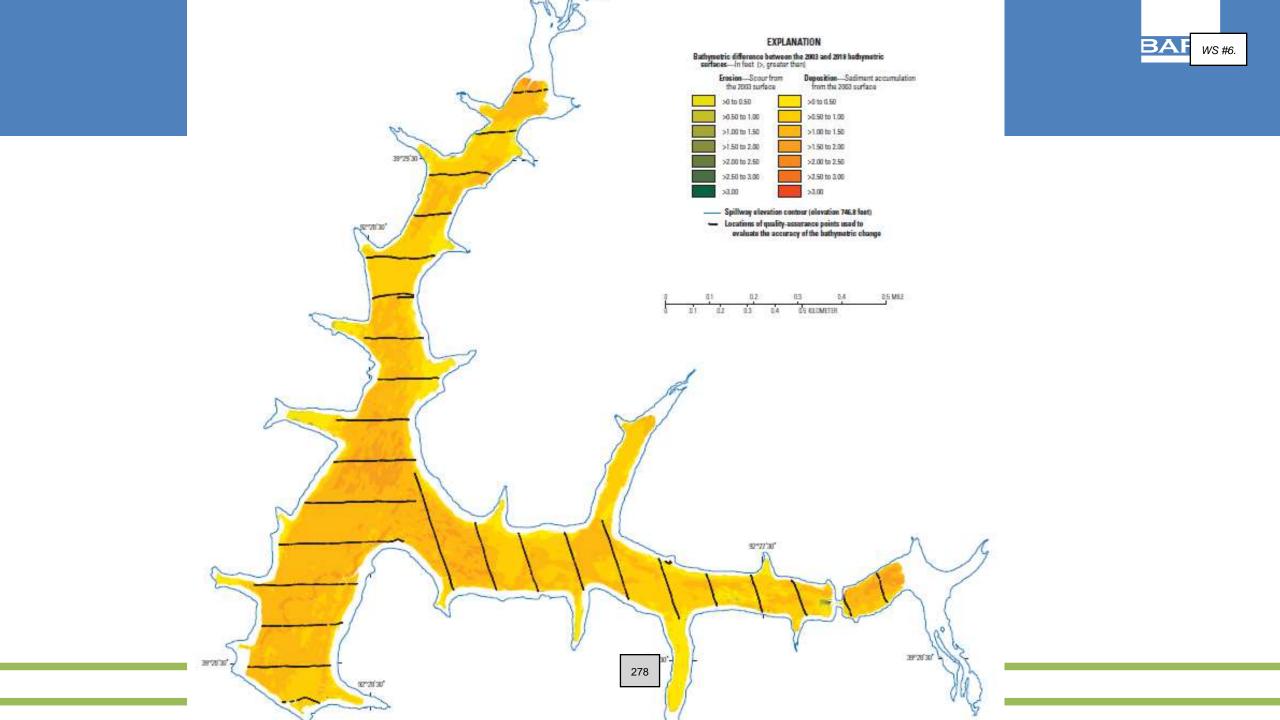
#### Sugar Creek Lake Seasonal TP Concentrations




BARR



## Stream Power Index and Universal Soil Loss Equation (USLE)


- Stream power index (SPI) is a measure of the erosive power of flowing water
- SPI is based on slope and contributing area
- USLE predicts soil loss or erosivity in the watershed
- Identified ravines of higher and lower risk
- Identified areas that are likely higher contributors of soil loss
- Created maps to display results of analysis

## Stream Power Index and Soil Erosivity



BAF

WS #6.

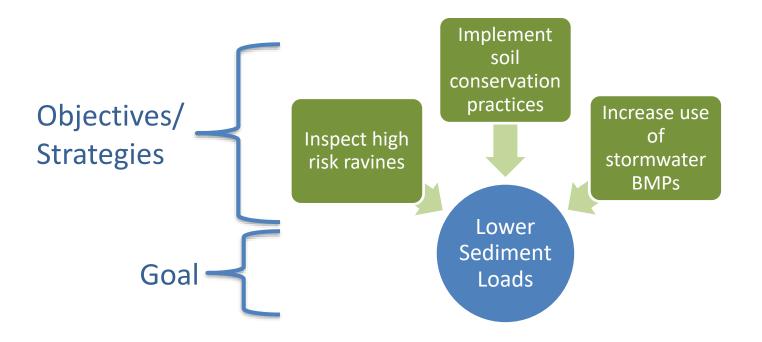


## Missouri DNR Lake Yield Study

- City's average daily water demand is 1.15 MGD
- 2003 Study by MDNR 1.2 MGD "optimal yield" in the record drought year; using 2003 USGS bathymetric survey
- 2018 USGS bathymetric survey captures 15 year change
- At full pool, approximately 1 MGD of water is being lost to seepage
- Sedimentation loss of 240 acre-feet, or 4.6%; 78 million gallons of storage
- Yield is 1.17 MGD during the drought of record (with seepage)
- Yield is 1.44 MGD during the drought of record (without seepage)

**Draft Lake Plan can be viewed online at:** 

https://cityofmoberly.com/DocumentC²⁸⁰er/View/933/DRAFT_ Sugar-Creek-Lake-SWPP-3-3-2020-Public-Notice-Copy


**Questions?** 

## Defined Goals, Objectives and Strategies

- Goals are the higher level vision for what we want to achieve
- Objectives & strategies define the step-by-step process of getting there

BAF

WS #6.



## Goals of the Plan



• **Goal 1**: Maintain and improve water quality for drinking water and aquatic life uses in Sugar Creek Lake.

• **Goal 2**: Maintain a sustainable quantity of water supply for the City of Moberly and its customers.

• **Goal 3**: Provide ongoing opportunities for public and stakeholder engagement regarding water quality and quantity at Sugar Creek Lake and for the City of Moberly.

## Example Objectives of the Plan and Implementation

- Understand current water supply source capacity (completed)
- Consider all funding options for plan implementation (ongoing)
- Engage public/stakeholders to work toward implementation (ongoing)

WS #6.

• Collect additional data to expand knowledge of pollutants in the lake.

## **Questions?**

Draft Lake Plan can be viewed online at:

https://cityofmoberly.com/DocumentCenter/View/933/DRAFT_ Sugar-Creek-Lake-SWPP-3-3-2020-Public-Notice-Copy



WS #7.

Agenda Item:	A request from Moberly Chamber of Commerce to hold their annual Junk Junction and to close of the 200, 300, 400, and 500 blocks of W. Reed on September 19, 2020 from 5 a.m. to 7:00 p.m.
Summary:	The Moberly Area Chamber of Commerce requests permission to close the 200, 300, 400 and 500 blocks of W Reed Street to hold the 2020 Junk Junction Vintage Vendor Market on Saturday September 19, 2020. Street closure requested beginning at 5:00am with the event being held until 7:00pm. Car show is from 9:00am to 5:00pm in the 200 and 300 blocks of W Reed. The intersections will remain open to vehicle traffic to allow emergency services and vendors improved access to the closed areas. The Chamber of Commerce requests parking be prohibited for the 200, 300, 400, and 500 blocks of W Reed from 5:00am to 7:00 pm and ordinance 6-5 Public Consumption be lifted for the 200, 300, 400, and 500 blocks for the sidewalks and street during Junk Junctions for event participants using designated glassware(cups) and identifying wristbands.
ecommended	

#### R

Action: Direct staff to bring to the July 20th Council meeting for final approval.

- Fund Name: N/A
- Account Number: N/A
- **Available Budget \$:** \$0

TTACHMENTS:		Roll Call	Aye	Nay
Memo	Council Minutes	Mayor		
Staff Report	<u>x</u> Proposed Ordinance	M S Jeffrey		
Correspondence	Proposed Resolution			
Bid Tabulation	Attorney's Report	Council Member		
P/C Recommendation	Petition	M S Brubaker		
P/C Minutes	Contract	M S Kimmons		
Application	Budget Amendment	M S Davis		
Citizen	Legal Notice	M S Kyser		
Consultant Report	Other		Passed	Failed



Moberly Area Chamber of Commerce

WS #7.

211 West Reed Street | Moberly, MO 65270 phone 660.263.6070 | fax 660.263.9443 www.MoberlyChamber.com

#### To: City of Moberly RE: Junk Junktion Vintage Vendor Market – Saturday, September 19, 2020

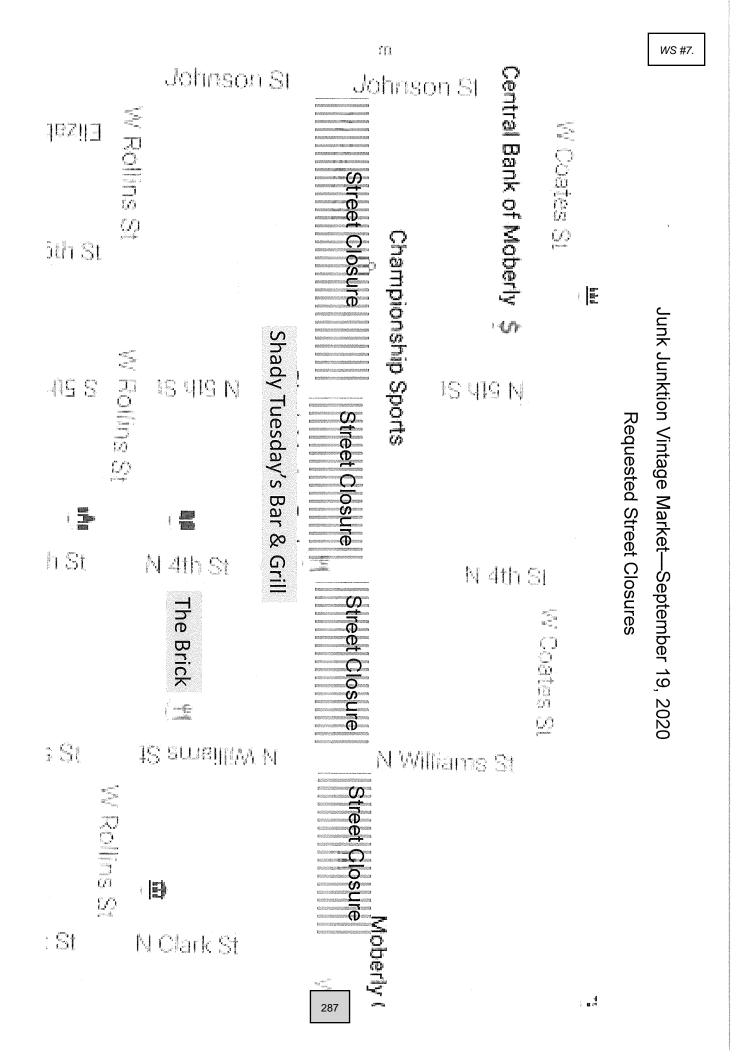
Moberly Area Chamber of Commerce would like to request the following:

- 1. Permission to hold Junk Junktion Vintage Vendor Market on the 200, 300, 400 & 500 blocks of Reed Street on Saturday, September 19, 2020.
- 2. Permission to close 200, 300, 400 & 500 blocks of Reed Street from 5:00am to 7:00 pm to hold Junk Junktion Vintage Market.
- 3. Permission to prohibit parking in the 200, 300, 400 & 500 blocks of Reed Street from 5:00am to 7:00 pm.
- 4. Permission to hold Junk Junktion Vintage Car Show in the 200 & 300 blocks of Reed Street on Saturday, September 19, 2020 from 9:00am to 5:00 pm.
- 5. Enforcement of the open alcohol container and public consumption ordinances to be lifted in the 200, 300, 400 & 500 blocks of Reed Street (in the street and on the sidewalks) during Junk Junktion Vintage Vendor Market for event participants using designated glassware and identifying wristbands.

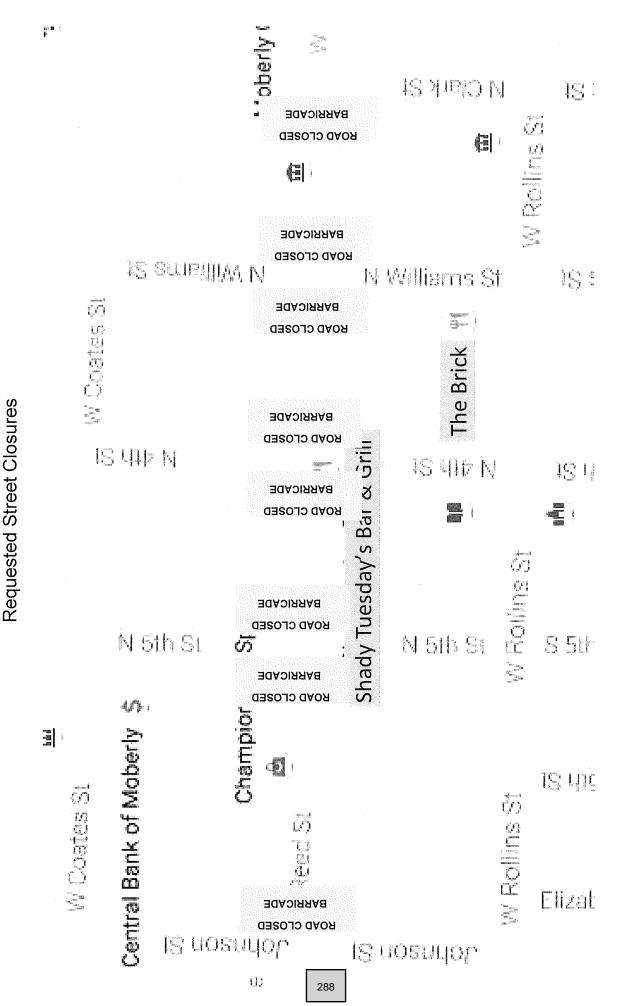
This event was established in 2018 as a way to enhance MHS Homecoming weekend. In addition to giving out of town Homecoming attendees an activity it also increases foot traffic to our downtown businesses. In 2019 zip codes from 37 counties and five states were recorded with an estimate of 1,000 to 1,500 people attending.

Vendors will again set up in the street to sell their items in the 300, 400 and 500 blocks. We will space vendors further apart than we have in years past to help provide plenty of social distancing space between booths. New this year, a vintage car show will be held in the 200 and 300 blocks of Reed. Downtown merchants will each be notified of the event and the road closure and they will be encouraged to bring items outside on the sidewalks or have a free booth in the street to enhance their sales. This event was very well received by Downtown merchants in 2018 and 2019 and the majority had a substantial increase in sales.

In 2019 we imitated the Taste of Missouri Wine Stroll by requesting enforcement of the ordinances regarding the open container and consumption of alcohol be lifted temporarily in Downtown Moberly. This worked exceptionally well last year having zero (0) reported incidents according to the Moberly Police Department. Attendees will again be able to purchase alcoholic beverages from licensed alcohol vendors and participating restaurants in the 200, 300, 400 and 500 blocks and "sip and shop" during the event in the street and on the sidewalks.


The alcohol vendors will card participants and provide a designated armband to those approved to drink alcohol during the event. We will carry liability insurance for this event. The alcohol vendors will provide designated cups to be used within the specified areas.

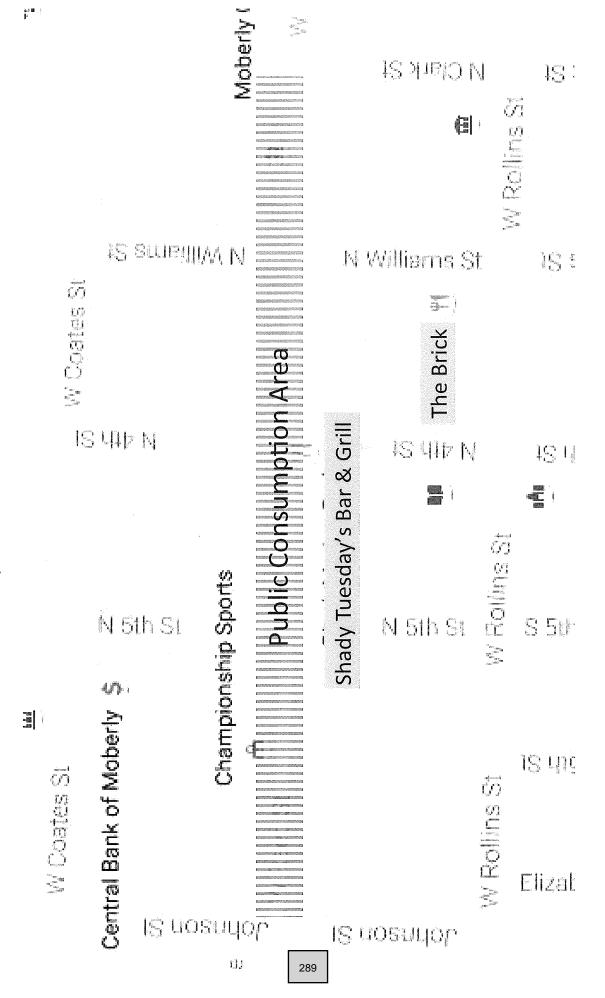
If the City of Moberly (or a specific department) would prefer adjustments to this request the event planning committee is open to that feedback. If any specific department has additional questions or would like to meet directly with the planning committee please contact Megan Schmitt by email <u>director@moberly.com</u> or phone 660.263.6070. Please keep us informed about the process to complete this request.


Thank you for your time and consideration.

Sincerely,

Executive Director – Moberly Area Chamber of Commerce








WS #7.



# Requested Street Closures



WS #7.

Available Budget \$: N/A

WS #8.

Agenda Item:Consideration of a contracts involving the old Junior High building.Summary:Tannehill Apartments LP is still interested in the housing project and applying<br/>for tax credits. Staff has also prepared a Purchase Agreement with Tannehill<br/>to sell the Junior High Building.Recommended<br/>Action:To review the agreement and give staff direction on the council's vision for<br/>the Junior High Building.Fund Name:N/AAccount Number:N/A

TACHMENTS:		Roll Call	Aye	Nay
Memo	Council Minutes	Mayor		
Staff Report	Proposed Ordinance	MSJeffrey		
Correspondence	Proposed Resolution			
Bid Tabulation	Attorney's Report	Council Member		
P/C Recommendation	Petition	M S Brubaker		
P/C Minutes	Contract	M S Kimmons		
Application	Budget Amendment	M S Davis		
Citizen	Legal Notice	M S Kyser		
Consultant Report	Other		Passed	Failed

### **COOPERATIVE PURCHASE AND DEVELOPMENT AGREEMENT**

THIS COOPERATIVE PURCHASE AND DEVELOPMENT AGREEMENT (this "Agreement") is made and entered into as of this ______ day of ______, 2020 ( the "Effective Date") by and between the **CITY OF MOBERLY**, a city of the third class and a Missouri municipality having a principal office at 101 West Reed Street, Moberly, Missouri, 65270 (the "**City**") and **TANNEHILL APARTMENTS LP** a Missouri Limited Partnership having a principal place of business at 1425 S. 18th Street, St. Louis, Missouri, 63104 (the "**Developer**"). ("**City**" together with "**Tannehill**", the "**Parties**")

### RECITALS

A. The Developer wishes to purchase and redevelop Property which is currently vacant and underutilized and which activities by the Developer the City recognizes will facilitate the City's economic development goals and improve property values in the area where the Property is located.

B. The City is willing to sell the Property to the Developer for the Purchase price in exchange for the Developer's promise to pursue, along with ND Consulting Group, an application with the Missouri Housing Development Commission for low income tax credits for development of senior citizen housing units.

### AGREEMENT

NOW, THEREFORE, in consideration of the above premises and the mutual promises and covenants set forth in this Agreement, the City and Developer each hereby agrees as follows:

### ARTICLE I. THE PROPERTY

**Section 1.1.** <u>The Property.</u> The Property shall mean a parcel of real estate known and numbered as 101 North Johnson Street on which is situated a building formerly serving as the Moberly Junior High School and which is legally described on the attached **Exhibit 1**, attached to and incorporated by reference in this Agreement (hereinafter referred to as the "**Property**").

### ARTICLE II. PURCHASE AND SALE

Section 2.1. <u>Purchase of the Property.</u> Subject to the terms and conditions of this Agreement the City agrees to sell, and Developer agrees to purchase the Property. The purchase price for the Property shall be the sum of ______ and other good and valuable consideration as stated herein.

**Section 2.2.** <u>Conveyance of the Property</u>. In consideration of the foregoing undertakings and covenants the Parties, City at City's sole cost and expense shall convey to Tannehill by special warranty deed the Property as described on the attached Exhibit 1. Tannehill may obtain at Tannehill's sole cost and expense, a commitment for an ATLA Owner's Policy of title insurance for the Property in the

amount of the consideration stated herein. City for itself and for any successor, assign, agent or representative of City hereby represents and warrants to Tannehill that as of the date of this Agreement and as of the Closing Date (as herein defined) City owns unencumbered fee title to the Property and has full and lawful authority to convey the Property to Tannehill as provided in this Agreement.

### Section 2.3. Events of Closing.

(a) The closing shall take place on a date mutually determined by the City and the Developer but in no event later sixty (60) days after the Effective Date. The closing shall occur at the Title Company during normal business hours or at such other location as the Developer and the City may mutually agree. At the closing, and upon payment of the purchase price by the Developer, the City shall transfer and convey all of the City's right, title and interest in the Property by Special Warranty Deed.

(b) Each Party shall execute, acknowledge, and deliver, after the closing, such further assurances, instruments and documents as the other may reasonably request in order to fulfill the intent of this Agreement and the transactions contemplated hereby.

(c) If Developer desires a Title Commitment be issued prior to closing, Developer shall pay the costs of any title commitment and for premiums on any owner's policy of title insurance, and any title endorsements to any such policy, issued by the Title Company that the Developer elects to obtain on the Property. All outstanding real estate taxes, and all other public or governmental charges and public or private assessments against the Property which are or may be payable on an annual basis (including liens or encumbrances for sewer, water, drainage or other public improvements whether completed or commences on or prior to the Effective Date or subsequent thereto), shall be paid by Developer. All other costs of closing shall be borne by the Developer including, without limitation, any applicable state, county and municipal transfer taxes, closing costs and recording fees charged by the Title Company.

(d) BY CLOSING ON THE PROPERTY, THE DEVELOPER ACKNOWLEDGES THAT THE DEVELOPER HAS HAD ADEQUATE OPPORTUNITY TO INSPECT, REVIEW AND CONSIDER ALL MATTERS AFFECTING THE USE, OWNERSHIP AND DEVELOPMENT OF THE PROPERTY AND THAT THE CONVEYANCE OF SAME BY THE CITY IS TO BE MADE ON AN "AS IS/WHERE IS" BASIS AND WITHOUT RECOURSE TO THE CITY. THE CONVEYANCE OF THE PROPERTY SHALL BE WITHOUT REPRESENTATION OR WARRANTY OF ANY KIND OR NATURE WHATSOEVER, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION: (i) ANY IMPLIED WARRANTY OR MERCHANTABILITY, FITNESS OR HABITABILITY, GOOD OR FAIR CONDITION OR REPAIR OR GOOD AND WORKMANLIKE CONSTRUCTION AND (ii) ANY WARRANTIES OR REPRESENTATIONS WITH RESPECT TO SITE CONDITIONS AS OF THE EFFECTIVE DATE AND OF THE CLOSING AND CONVEYANCE OF THE PROPERTY OR POTENTIAL LIABILITIES UNDER OR WITH RESPECT TO ANY FEDERAL, STATE OR LOCAL ENVIRONMENTAL LAW OR REGULATION, ALL OF WHICH WARRANTIES ARE EXPRESSLY DISCLAIMED BY THE CITY AND EACH OF WHICH DISCLAIMERS IS HEREBY AGREED TO AND ACCEPTED BY THE DEVELOPER.

**Section 2.4.** <u>Real Estate Brokers.</u> The City and Developer hereby state and warrant to each other that neither has dealt with any real estate broker, agent or salespersons in connection with this transaction and the sale of the Property. To the full extent permitted by law, the City and Developer each agree to indemnify and hold the other harmless against any claims for real estate commissions or consultant fees claiming representation of such party in this transaction. Such obligations to indemnify

and hold harmless shall include, without limitation, all costs and attorneys' fees relating to litigation and other proceedings.

# ARTICLE III MISCELLANEOUS PROVISIONS

**Section 3.1.** <u>No Assignment.</u> Neither Party shall be permitted to sell, assign or otherwise transfer its interest in the Agreement in whole or in part to any other individual or entity.

**Section 3.2.** <u>Notices.</u> Whenever notice or other communication is called for in this Agreement to be given or is otherwise given, such notice shall be in writing addressed to the addressees at the address set forth below, and transmitted by first class mail:

- City: City of Moberly Attention: Brian Crane 101 West Reed Street Moberly, Missouri 65270
- Developer: Kenneth Nuernberger 1425 S. 18th Street St. Louis, Missouri 63104

**Section 3.3.** <u>Choice of Law; Venue; Waiver of Objections.</u> This Agreement shall be governed by and construed in accordance with the laws of the State of Missouri. The Parties agree that any action at law, suit in equity, or other judicial proceeding arising out of this Agreement shall be instituted only in the Circuit Court of Randolph County, Missouri and waive any objection based upon venue or forum non conveniens or otherwise.

**Section 3.4.** <u>Entire Agreement; Amendments; No Waiver by Prior Actions.</u> The Parties agree that this Agreement constitutes the entire agreement between them and no other agreements or representations have been made by the Parties. This Agreement shall only be amended in writing and effective when signed by the duly authorized agents of the Parties. The failure of any Party to insist in any one or more cases upon the strict performance of any term, covenant or condition shall not constitute a waiver or relinquishment for the future of any such term, covenant or condition.

Section 3.5. <u>No Waiver of Sovereign Immunity; Public Liability Strictly Limited.</u> Nothing in this Agreement shall be construed or deemed to constitute a waiver of the City's Sovereign Immunity. The Parties agree that in no event shall the City, or any of its officials, officers, agents, attorneys, employees, or representatives have any liability in damages or any other monetary liability to the Developer or any lessee, sublessee, assign, heir or personal representative of the Developer in respect of any suit, claim, or cause of action arising out of this Agreement.

**Section 3.6.** <u>Execution in Counterparts.</u> Each person executing this Agreement warrants and represents that he or she has authority to do so on behalf of the entity he or she represents. This Agreement may be executed in two or more counterparts, and all counterparts so executed shall for all purposes constitute one and same instrument, binding on the Parties hereto.

IN WITNESS WHEREOF, the Parties have executed this Agreement as of the Effective Date.

# **CITY OF MOBERLY**

Ву: _____

Jerry Jeffrey, Mayor

ATTEST:

D.K. Galloway, City Clerk

DEVELOPER

Ву: ____

Kenneth Nuernberger

# Agenda Item: Review of a Caselle Contract Agreement

Summary: City staff have been evaluating software products for use for all City Departments for use in Utilities Billing and Management, Finance, Licensing, Permitting, and other modules. After much research and review, the Staff's recommendation is to move forward with Caselle. A presentation about the software was provided at a previous work session. The next step is to enter into a contract with the software vendor. The initial costs for conversion and training, including the first year's subscription is included in the already-approved ESP contract. Annual costs after conversion are \$39,000 (less \$1950 if paid annually instead of monthly.) Initially, the City thought that the agreement could be developed between ESP and Caselle. Due to the long-term nature of the agreement, it was agreed that the City would be the contracting party. The current version of the negotiated contract is attached to this summary sheet for Council review. It is anticipated that the conversion for all phases will last 180-240 days.

- **Recommended** Direct staff to develop a resolution for the next regular Council meeting to authorize the City manager to sign the final agreements.
  - Fund Name: General Fund and Utilities
- Account Number: N/A
- Available Budget \$: 0.00

ACHMENTS:		Roll	Call Ay	e Nay
Memo	Council Minutes	Mayor		
Staff Report	Proposed Ordinance	M S Jeff	rey	
Correspondence	X Proposed Resolution			
Bid Tabulation	Attorney's Report	Council Member	•	
P/C Recommendation	Petition	M S Bru	baker	
P/C Minutes	Contract	M S Kim	mons	
Application	Budget Amendment	M S Dav	vis	
Citizen	Legal Notice	M S Kys	er	
Consultant Report	Other		Pas	sed Failed



WS #9.

# Proposal Addendum A

Caselle[®] Hosted Software & Services

# City of Moberly, MO

July 2, 2020



# **Proposal Addendum A** Caselle® Hosted Software & Services Proposal City of Moberly, MO July 2, 2020

# **Proposal Summary**

License Type	Hosted
Total Training at Caselle	\$2,225
Total Setup	1,500
Total Conversion	1,500
Total Investment	\$5,225

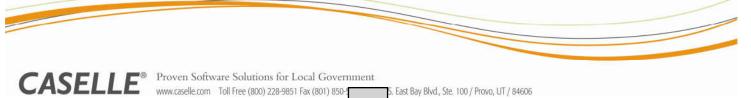
Hosted Maintenance & Support will increase by \$507 per month.

I have read and agree to all terms & conditions proposed herein. I understand if the City of Moberly is unable to provide data to Caselle in the requested format, additional fees will apply.

Signature

Printed Name & Title

Date




# Proposal Addendum A Caselle[®] Hosted Software & Services Proposal City of Moberly, MO July 2, 2020

# **Proposal Detail**

<i>Caselle</i> [®] Application Software	License Type	Training at Caselle	Setup	Conversion	Total
Asset Management	Hosted	\$550	\$500	\$500	\$1,550
Cemetery Management	Hosted	Included	-	500	500
Materials Management	Hosted	1,125	500	500	2,125
Community Development - Approvals & Notifications	Hosted	550	500	-	1,050
Grand Total	Hosted	\$2,225	\$1,500	\$1,500	\$5,225

Hosted Maintenance & Support Breakdown	Monthly
Asset Management	\$124
Cemetery Management	101
Materials Management	169
Community Development – Approvals & Notifications	113
Total	\$507



WS #9.

# **Proposal Addendum A** Caselle[®] Hosted Software & Services Proposal City of Moberly, MO July 2, 2020

# **Implementation Services**

Data conversion is an involved, sometimes complicated procedure that must be completed with a high level of accuracy and precision. To make this process run smoothly, Caselle requires your assistance in providing the required materials for preliminary data conversion, offering clarification as needed during the conversion process, and supplying updated materials for the final data conversion. *Please read the following* information carefully.

### **Gathering Preliminary Data**

Assemble the following information and send it to Caselle.

- Complete the Information Worksheets during each phase of the conversion.
- Provide data to be converted.
  - You may need to clarify the data, as needed, during the conversion process.
  - Caselle will not convert the prior period detail during data conversion unless optional history conversion is specified in the contract.
- Send printed or PDF reports to verify account balances at the time data is sent to Caselle for preliminary

conversion and again for final data conversion.

### Submitting Conversion Data

You will be provided a file layout for each application that will have data conversion. The file layout details the required and/or optional fields that Caselle will need to provide the conversion. The cost of conversion quoted in this proposal is based on your submission of the necessary data in the requested formats. If data cannot be supplied in this format, additional costs will be billed to get your existing data into the desired formats ready for conversion and could delay any proposed timeline. We may also need file layouts or descriptions of tables and where all of the necessary information is located within your existing data to complete the conversion.

### **Data Conversion Timeline**

The timeline begins when the requested data and all required preliminary information has been received by Caselle. The timeline to complete an accurate data conversion can range from 120 – 180 days. This is dependent upon the condition of the data and the client's willingness to review the preliminary information for accuracy, including information requested in the discovery phase of the conversion.

### Scheduling Training

Important! Training will only be scheduled after Caselle has completed the mock conversion and the customer has reviewed and approved the conversion.

After training is scheduled, a representative from the Implementation team will review the remaining steps to ensure a successful implementation, prior to going Live on Caselle.



www.caselle.com Toll Free (800) 228-9851 Fax (801) 850-

WS #9.



# **Proposal Addendum A** Caselle® Hosted Software & Services Proposal City of Moberly, MO July 2, 2020

# Software Setup & Data Conversion

This section contains the items, per directory, that will be setup and converted in each module. Since estimating the exact quantity may be difficult, we will adjust the calculated conversion cost if the actual number of items converted is greater than or less than 25% of the original estimate.

Data conversion requires that data be submitted in the required format. It is the responsibility of the customer to provide data to Caselle. Conversion services to retrieve or modify your data to the required formats are available at an additional cost. These services will be billed at Caselle's current hourly rate and are not included in this proposal.

Asset Management Setup	<ul> <li>Establish the default depreciation frequency and method, with the asset number format.</li> <li>Set up departments, classifications, and asset types.</li> <li>Create a Checklist to document procedures, including the asset creation and General Ledger updates.</li> </ul>
Data Conversion	<ul> <li>Asset number, description, department, classification, and type will be converted. The depreciation start date, life, and method of depreciation will be converted for each asset, if provided.</li> <li>Accumulated depreciation can be converted to ensure an accurate beginning balance.</li> </ul>
Cemetery Management Data Conversion	<ul> <li>The Lot Location format will be set up.</li> <li>The lot, owner, and deceased information will be converted.</li> <li>A cemetery deed form will be set up.</li> <li>Additional forms will be billed at the rate of \$100 per form. Forms that have multiple pages will be billed \$100 for each additional page included in the form.</li> </ul>
Materials Management Setup	<ul> <li>Create the inventory number mask.</li> <li>Set up the Department, Category, and Location files.</li> <li>Establish inventory levels, turnover, and valuation reports.</li> <li>Create a Checklist to document daily, monthly, and inventory procedures.</li> </ul>
Data Conversion	<ul> <li>Inventory items will be converted. This includes the inventory number, description, location, category, quantity, and unit cost for each item. Inventory valuation will be balanced if available.</li> </ul>





CASELLE® Proven Software Solutions for Local Government www.caselle.com Toll Free (800) 228-9851 Fax (801) 850-

5. East Bay Blvd., Ste. 100 / Provo, UT / 84606

WS #9.

### CASELLE, INC.

### Software as a Service Agreement

Caselle, Inc. 1656 S East Bay Blvd Suite 100 Provo, UT 84606 City of Moberly 101 W. Reed St. Moberly, MO 65270

### **TERMS OF SERVICE**

These Terms of Service constitute an agreement (this "Agreement") by and between Caselle, Inc., a Utah Corporation, ("Provider") and the City of Moberly, MO, ("Recipient").

### 1. Definitions.

- (a) "Account" refers to the Service plans and features selected by Recipient at the time of this Agreement and accepted by Provider, as such plans and features may change by mutual consent of the parties, as recorded by Provider.
- (b) "AUP" refers to Provider's acceptable use policy as described in Schedule B.
- (c) "Authorized Representative" refers to an individual who is authorized under applicable law to bind and/or consent on behalf of the Provider or Recipient.
- (d) "Data Policy" refers to Provider's standard data deletion policy as described in Schedule A of this Agreement.
- (e) "Effective Date" refers to the date of this Agreement.
- (f) "Materials" refers to written and graphical content provided by or through the Service, including, without limitation, text, photographs, illustrations, and designs, whether provided by Provider, another customer of the Service, or any other third party.
- (g) "Recipient Data" refers to data in electronic form input or collected through the Service by or from Recipient.
- (h) "Service" refers to Provider's hosted version of the Caselle Connect software. The Service includes such features as are set forth on Provider's website (www.caselle.com), as Provider may change such features from time to time, in its sole discretion.

### 2. Service & Payment.

- (a) *Service*. Provider will provide the Service to Recipient pursuant to its standard policies and procedures then in effect.
- (b) Payment. Upon completion of data conversion and training, Recipient will pay Provider a monthly Service Fee of \$3,250.00. This amount will increase by \$507.00 per month if Proposal Addendum A is included with signed agreements. The Service Fee will be considered due five (5) days before the start of the calendar month of Service. The monthly Service Fee will remain

fixed for one year unless Recipient adds more applications or users. After the initial one-year term, Provider may increase the monthly Service Fee on an annual basis. Provider will give notice sixty (60) days prior to any increase. Any increase will not exceed 3% of the current monthly Service Fee.

### 3. Service Level Agreement.

The Service Levels shall be in accordance with Schedule C.

### 4. Materials, Software, & IP.

- (a) Materials. Recipient recognizes and agrees that: (i) the Materials are the property of Provider or its licensors and are protected by copyright, trademark, and other intellectual property laws; and (ii) Recipient does not acquire any right, title, or interest in or to the Materials except the limited and temporary right to use them as necessary for Recipient's use of the Service.
- (b) Intellectual Property in General. Provider retains all right, title, and interest in and to the Service, including without limitation all software used to provide the Service and all logos and trademarks reproduced through the Service, and this Agreement does not grant Recipient any intellectual property rights in or to the Service or any of its components.

### 5. Online Policies.

- (a) AUP. Recipient will to comply with the AUP. In the event of Recipient's material breach of the AUP, including without limitation any copyright infringement, Provider may suspend or terminate Recipient's access to the Service, in addition to such other remedies as Provider may have at law or pursuant to this Agreement. Neither this Agreement nor the AUP requires that Provider take any action against Recipient or any other customer for violating the AUP, but Provider is free to take any such action it sees fit.
- (b) Privacy Policy. The Privacy Policy applies only to the Service and does not apply to any third party site or service linked to the Service or recommended or referred to through the Service or by Provider's employees.

### 6. Each Party's Warranties.

- (a) Recipient's Identity. Recipient warrants: (i) that it has accurately identified itself through its Account and will maintain the accuracy of such identification; and (ii) that it is a corporation or other business entity authorized to do business pursuant to applicable law.
- (b) Right to Do Business. Each party warrants that it has the full right and authority to enter into, execute, and perform its obligations under this Agreement and that no pending or threatened claim or litigation known to it would have a material adverse impact on its ability to perform as required by this Agreement.
- (c) Disclaimers. Except for the express warranties specified in this section, THE SERVICE IS PROVIDED "AS IS" AND AS AVAILABLE, AND PROVIDER MAKES NO WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. Without limiting the generality of the foregoing, (i) PROVIDER HAS NO OBLIGATION TO INDEMNIFY OR DEFEND RECIPIENT AGAINST CLAIMS RELATED TO



INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS; and (ii) Provider does not warrant that the Service will perform without error or immaterial interruption.

### 7. Limitation of Liability.

IN NO EVENT: (a) WILL PROVIDER'S LIABILITY ARISING OUT OF OR RELATED TO THIS AGREEMENT EXCEED THE AMOUNT PAID FOR 60 DAYS OF SERVICE; AND (b) WILL PROVIDER BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, SPECIAL, INCIDENTAL, OR PUNITIVE DAMAGES. THE LIABILITIES LIMITED BY THIS SECTION 7 APPLY: (i) TO LIABILITY FOR NEGLIGENCE; (ii) REGARDLESS OF THE FORM OF ACTION, WHETHER IN CONTRACT, TORT, STRICT PRODUCT LIABILITY, OR OTHERWISE; (iii) EVEN IF PROVIDER IS ADVISED IN ADVANCE OF THE POSSIBILITY OF THE DAMAGES IN QUESTION AND EVEN IF SUCH DAMAGES WERE FORESEEABLE; AND (iv) EVEN IF RECIPIENT'S REMEDIES FAIL OF THEIR ESSENTIAL PURPOSE. If applicable law limits the application of the provisions of this Section 7, Provider's liability will be limited to the maximum extent permissible.

### 8. Data Management.

- (a) Access, Use, & Legal Compulsion. Unless it receives Recipient's prior written consent, Provider: (i) will not access or use Recipient Data other than as necessary to facilitate the Service; and (ii) will not give any third party access to Recipient Data. Notwithstanding the foregoing, Provider may disclose Recipient Data as required by applicable law or by proper legal or governmental authority. Provider will give Recipient prompt notice of any such legal or governmental demand and reasonably cooperate with Recipient in any effort to seek a protective order or otherwise to contest such required disclosure, at Recipient's expense.
- (b) *Recipient's Rights*. Recipient possesses and retains all right, title, and interest in and to Recipient Data, and Provider's use and possession thereof is solely as Recipient's agent.
- (c) *Retention & Deletion*. Provider will retain all Recipient Data until erased pursuant to the Data Policy.
- (d) Injunction. Provider agrees that violation of the provisions of this Section 8 might cause Recipient irreparable injury, for which monetary damages would not provide adequate compensation, and that in addition to any other remedy, Recipient will be entitled to injunctive relief against such breach or threatened breach, without proving actual damage or posting a bond or other security.

### 9. Term & Termination.

- (a) Term. This Agreement will continue for three (3) years following the Effective Date (a "Term"). Thereafter, this Agreement will renew for subsequent terms ("Terms") of thirty (30) days, unless either party notifies the other of its intent not to renew ninety (90) or more days before the beginning of the next Term.
- (b) *Termination for Cause*. Either party may terminate this Agreement for material breach by written notice, effective in 30 days, unless the other party first cures such breach.
- (c) Effects of Termination. The following provisions will survive termination of this Agreement: (i) any obligation of Recipient to pay for Service rendered before termination; (ii) Sections 4, 5(b), 6(c), and 7 of this Agreement; and (iii) any other provision of this Agreement that must survive termination to fulfill its essential purpose.



### 10. Miscellaneous.

- (a) Notices. Provider may send notices pursuant to this Agreement to Recipient's address at City of Moberly, 101 W. Reed St., Moberly, MO 65270, and such notices will be deemed received ten (10) days after they are sent. Recipient may send notices pursuant to this Agreement to Caselle, Inc, 1656 S East Bay Blvd, Suite 100, Provo, UT 84606, and such notices will be deemed received ten (10) days after they are sent.
- (b) Amendment. Provider may amend the Data Policy and/or the Acceptable Use Policy at any time by posting a new version at its website and/or sending Recipient notice thereof, and such amended version will become effective 30 business days after such notice is sent. Recipient's continued use of the Service following the effective date of an amendment will confirm Recipient's consent thereto. This Agreement may not be amended in any other way except through a written agreement executed by Authorized Representatives of each party.
- (c) Independent Contractors. The parties are independent contractors and will so represent themselves in all regards. Neither party is the agent of the other and neither may bind the other in any way.
- (d) No Waiver. Neither party will be deemed to have waived any of its rights under this Agreement by lapse of time or by any statement or representation other than (i) by an Authorized Representative and (ii) in an explicit written waiver. No waiver of a breach of this Agreement will constitute a waiver of any prior or subsequent breach of this Agreement.
- (e) *Force Majeure*. To the extent caused by force majeure, no delay, failure, or default will constitute a breach of this Agreement.
- (f) Assignment & Successors. Neither party may assign this Agreement or any of its rights or obligations hereunder without the other's express written consent, except that either party may assign this Agreement to the surviving party in a merger of that party into another entity. Except to the extent forbidden in the previous sentence, this Agreement will be binding upon and inure to the benefit of the respective successors and assigns of the parties.
- (g) *Choice of Law & Jurisdiction*. This Agreement will be governed and construed solely by the laws of the State of Missouri, without reference to such State's principles of conflicts of law. The parties consent to the personal and exclusive jurisdiction of the state courts of Missouri.
- (h) Severability. To the extent permitted by applicable law, the parties hereby waive any provision of law that would render any clause of this Agreement invalid or otherwise unenforceable in any respect. In the event that a provision of this Agreement is held to be invalid or otherwise unenforceable, such provision will be interpreted to fulfill its intended purpose to the maximum extent permitted by applicable law, and the remaining provisions of this Agreement will continue in full force and effect.
- (i) Certain Notices. Pursuant to 47 U.S.C. Section 230(d), Provider hereby notifies Recipient that parental control protections (such as computer hardware, software, or filtering services) are commercially available that may assist in limiting access to material that is harmful to minors. Information regarding providers of such protections may be found on the Internet by searching "parental control protection" or similar terms.
- (j) *Conflicts among Attachments*. In the event of any conflict between the terms of this main body of this Agreement and those of any accompanying schedule, the terms of this main body will



govern. In the event of any conflict between this Agreement and any Provider policy posted online, including without limitation the AUP and Privacy Policy, the terms of this Agreement will govern.

- (k) Entire Agreement. This Agreement sets forth the entire agreement of the parties and supersedes all prior or contemporaneous writings, negotiations, and discussions with respect to the subject matter hereof. Neither party has relied upon any such prior or contemporaneous communications. The following items are also considered part of this Agreement:
  - 1) Contract Proposal
  - 2) Contract Proposal Addendum A
  - 3) Software Use Agreement

The signatures below indicate each party's acceptance of the Agreement. Each party has caused this Agreement to be executed by its duly Authorized Representative.

By:

Name:

Date:

# CASELLE, INC.

# CITY OF MOBERLY, MO

By: Alu S tulety Name: Alan S. Hutchings

Title: President Title:

Date: July 2, 2020

# Schedule A – Data Policy

- (a) Access, Use, & Legal Compulsion. Unless it receives Recipient's prior written consent, Provider: (i) will not access or use data in electronic form collected through the Services from Recipient's customers or other third parties, or collected or accessible directly from Recipient, (collectively, "Data") other than as necessary to facilitate the Services; and (ii) will not give any third party access to Data. Notwithstanding the foregoing, Provider may disclose Data as required by applicable law or by proper legal or governmental authority. Provider will give Recipient prompt notice of any such legal or governmental demand and reasonably cooperate with Recipient in any effort to seek a protective order or otherwise to contest such required disclosure, at Recipient's expense.
- (b) *Recipient's Rights*. Recipient possesses and retains all right, title, and interest in and to Project Data, and Provider's use and possession thereof is solely as Recipient's agent.
- (c) Retention & Deletion. Provider will retain any Data in its possession until Erased. Provider will Erase:
   (i) all copies of Data promptly after Recipient's written request; and (ii) all copies of Data no sooner than 90 days after termination of this Agreement and no later than 120 days after such termination. Promptly after Erasure pursuant to this Subsection (c), Provider will certify such Erasure in writing to Recipient. ("Erase" and "Erasure" refer to the destruction of data so that no copy of the data remains or can be accessed or restored in any way.)
- (d) Individuals' Access. Provider will not allow any of its employees to access Data, except to the extent that an employee needs access in order to facilitate the Services and executes a written agreement with Provider agreeing to comply with Provider's obligations set forth in this Section.
- (e) *Compliance with Law & Policy*. Provider will comply with all applicable federal and state laws and regulations governing the handling of Data.
- (f) Leaks. Provider will promptly notify Recipient of any actual or potential exposure or misappropriation of Data (any "Leak") that comes to Provider's attention. Provider will cooperate with Recipient and with law enforcement authorities in investigating any such Leak, at Provider's expense. Provider will likewise cooperate with Recipient and with law enforcement agencies in any effort to notify injured or potentially injured parties, and such cooperation will be at Provider's expense, except to the extent that the Leak was caused by Recipient. The remedies and obligations set forth in this Subsection (f) are in addition to any others Recipient may have.

### Schedule B – Acceptable Use Policy

### A. Unacceptable Use

Provider requires that all customers and other users of Provider's service (the "Service") conduct themselves with respect for others. In particular, please observe the following rules in your use of the Service:

- 1) *Privacy:* Do not violate the privacy rights of any person. Do not collect or disclose any personal address, social security number, or other personally identifiable information without each holder's written permission. Do not cooperate in or facilitate identity theft.
- 2) Intellectual Property: Do not infringe upon the copyrights, trademark rights, trade secret rights, or other intellectual property rights of any person or entity. Do not reproduce, publish, or disseminate software, audio recordings, video recordings, photographs, articles, or other works of authorship without the written permission of the copyright holder.
- 3) Hacking, Viruses, & Network Attacks: Do not access any computer or communications system without authorization, including the computers used to provide the Service. Do not attempt to penetrate or disable any security system. Do not intentionally distribute a computer virus, launch a denial of service attack, or in any other way attempt to interfere with the functioning of any computer, communications system, or website. Do not attempt to access or otherwise interfere with the accounts of other users of the Service.
- 4) *Fraud:* Do not issue fraudulent offers to sell or buy products, services, or investments. Do not mislead anyone about the details or nature of a commercial transaction. Do not commit fraud in any other way.
- 5) Violations of Law: Do not violate any law.

### **B.** Consequences of Violation

Violation of this Acceptable Use Policy (this "AUP") may lead to suspension or termination of the Recipient's use of the Service or legal action. In addition, the Recipient may be required to pay for the costs of investigation and remedial action related to AUP violations.

### C. Reporting Unacceptable Use

Provider requests that anyone with information about a violation of this AUP report it to the following address: Caselle, Inc. 1656 S East Bay Blvd, Suite 100, Provo, Utah 84606. Please provide the date and time of the violation and any identifying information regarding the violator, including e-mail or IP (internet protocol) address if available, as well as details of the violation.

### D. Revision of AUP

Provider may change this AUP at any time by posting a new version on its website (www.caselle.com) or by sending the Recipient written notice thereof. The new version will become effective on the date of such notice.



### Schedule C – Service Level Agreement

1. Service Availability Service Level. Provider will provide 99.99% Service Availability over onemonth periods, excluding any Service Maintenance or Force Majeure Events (as defined below) that result in the Services not being available to any Recipient user, as measured and monitored from Provider's facilities. Service Availability will be calculated on a monthly basis using the following formula: (Actual Availability *divided by* Total Scheduled Availability). The following definitions will apply with respect to the calculation of Service Availability:

(a) "Actual Availability" means Total Scheduled Availability minus Downtime, in minutes.

(b) **"Downtime**" means the time (in minutes) that users of the Service are not able to (a) access the Service, (b) perform ordinary functions to use or receive Services in accordance with Specifications, or (c) utilize the Service and Services for normal business operations due to failure malfunction or delay. Downtime does not include any unavailability of the Service due to Service Maintenance or a failure or defect arising out of a Force Majeure Event.

(c) **"Force Majeure Event**" means the failure or delay due to an event beyond Provider's control, including but not limited to, strikes, insurrection, war, fire, lack of energy, acts of God, mechanical or electrical breakdown, governmental acts or regulations, computer malfunction, or acts of third parties.

(d) **"Service Maintenance**" means time (in minutes) that the Service is not accessible to Recipient due to maintenance of the Service, including for maintenance and upgrading of the software and hardware used by Provider to provide the Services. Service Maintenance includes scheduled maintenance and unscheduled, emergency maintenance. Scheduled maintenance will generally occur after 8:00 PM MST and before 6:00 AM MST.

(e) **"Total Scheduled Availability"** means 7 days per week, 24 hours per day, excluding Service Maintenance, in minutes.

2. SLA CREDITS FOR SERVICE AVAILABILITY SERVICE LEVEL FAILURE. If the service availability during any given month falls below 99.99%, provider will provide recipient with a sla credit equal to the percentage of the total monthly fee applicable to the month in which the service level failure occurred corresponding to the service availability level set forth in the chart below:

Service Availability Level	SLA Credit
99.1-99.99%	1% of total monthly fee applicable to month in which failure occurred
96.5-99%	5% of total monthly fee applicable to month in which failure occurred
< 96.5%	10% of total monthly fee applicable to month in which failure occurred

**3. SLA CREDIT PROCEDURES.** Credits issued will apply to outstanding or future payments only and are forfeited upon termination of this agreement. Provider is not required to issue refunds or to make payments against such credits under any circumstances, including without limitation termination of this agreement.

# SOFTWARE USE AGREEMENT

### CASELLE, INC.

1656 S. East Bay Blvd. Suite 100 Provo, UT 84606

**CITY of MOBERLY** 101 W. Reed St. Moberly, MO 65270

("Caselle")

("You" or "Your")

You agree to Use the Software and Purchase the services detailed below ("Items"), and Caselle, Inc. agrees to provide them, subject to the terms and conditions on pages two and three of this Agreement.

Total Price \$58,825.00

Balance Due \$58,825.00

Items

License Type	Hosted
Total Training	\$16,575.00
Total Setup	14,450.00
Total Conversion	27,800.00
Total Price	\$58,825.00

The attached Proposal is considered part of this Agreement.

The signatures below indicate each party's acceptance of this Agreement. Each party has caused this Agreement to be executed by its duly authorized representative.

CASELLE, INC.

By: Alu S Hully

Name & Title: Alan S. Hutchings, President

Date: July 2, 2020

**CITY of MOBERLY** 

By:

Name & Title:

Date:



# **PROPOSAL ADDENDUM A**

### CASELLE, INC.

1656 S. East Bay Blvd. Suite 100 Provo, UT 84606 **CITY of MOBERLY** 101 W. Reed St. Moberly, MO 65270

("Caselle")

("You" or "Your")

You agree to Use the Software and Purchase the services detailed below ("Items"), and Caselle, Inc. agrees to provide them, subject to the terms and conditions on pages two and three of this Agreement.

Total Price \$5,225.00

Balance Due \$5,225.00

Items

License Type	Hosted
Total Training	\$2,225.00
Total Setup	1,500.00
Total Conversion	1,500.00
Total Price	\$5,225.00

The attached Proposal is considered part of this Agreement.

The signatures below indicate each party's acceptance of this Agreement. Each party has caused this Agreement to be executed by its duly authorized representative.

CASELLE, INC.

By: Alu Stully

Name & Title: Alan S. Hutchings, President

Date: July 2, 2020

**CITY of MOBERLY** 

By:

Name & Title:

Date:

### CASELLE, INC. SOFTWARE USE AGREEMENT

### Grant of Right

Caselle, Inc. and its Licensors agrees to grant, and You agree to accept a limited, non-transferable, non-exclusive right ("Right") to use the computer programs, with the accompanying manuals, literature and other materials ("Software") as detailed under Items, <u>subject to the terms and conditions of this Software Use</u> Agreement and subject to termination as provided herein. The term Software shall also include all revisions, updates, enhancements and new modules or add-ons to the existing Software as detailed under Items.

### Payment

The Balance shall be paid by You upon execution of this Software Use Agreement. Payment shall be in U.S. Dollars and shall not be deemed to have been received by Caselle until Your check clears the banking process. Any costs incurred in collecting Your check, due to insufficient funds or any other reason, shall be reimbursed by you. Late payments shall be subject to a <u>FINANCE</u> <u>CHARGE OF 1.5% PER MONTH, OR 18% PER ANNUM.</u>

### Taxes

Prices and fees are exclusive of all federal, state, municipal, or other government excise, duties, sales, use, occupational, or like taxes now or hereafter in force, and are therefore subject to increase in an amount equal to any tax Caselle may be required to collect or pay upon licensing or delivery of any Items, other than federal, state and local taxes based on Caselle's income. You also agree to pay all personal property taxes which accrue to you by reason of this Agreement.

### **Title and Confidentiality**

Title and full ownership rights to the Software licensed under this Agreement, including, without limitation, all intellectual property rights therein and thereto, and any copies You make, remain with Caselle. It is agreed the Software is the proprietary, confidential, trade secret property of Caselle, whether or not any portions thereof are or may be copyrighted and You shall take all reasonable steps necessary to protect the confidential nature of the Software as You would take to protect Your own confidential and trade secret information. You further agree that You shall not make any disclosure of any or all such Software (including methods or concepts utilized therein) to anyone, except to employees, agents, or contractors working for You to whom such disclosure is necessary to the use for which rights are granted hereunder. You shall appropriately notify all employees, agents, and contractors to whom any such disclosure is made that such disclosure is made in confidence and shall be kept in confidence by them. Upon Caselle's request, such employees, agents, and contractors shall enter into an appropriate confidentiality agreement for secrecy and nonuse of such information which by its terms shall be enforceable by injunctive relief at the request of Caselle. If Caselle makes such a request, it shall provide You with the appropriate confidentiality agreements. obligations imposed by this section upon You, Your employees, agents, and contractors, shall survive and continue after any termination of rights under this Agreement. It shall not be a breach of this Agreement if you are required to disclose or make

the Software available to a third party or to a court if the Software is subpoenaed or otherwise ordered by an administrative agency or court of competent jurisdiction to be produced or disclosed.

### Rights

### You may not:

- Rent, lease, sublicense, assign, sell, loan or otherwise transfer this Right, in whole or in part, except as expressly permitted by this Agreement.
- b) Inspect, disassemble, decompile, reverse engineer or in any way attempt to determine the internal methods of the Software.
- c) Modify the Software or merge it into any other product without the express written consent of Caselle.
- d) Reproduce, prepare derivative works based upon, transmit or distribute the Software, or any part of it, in any form or by any means except as expressly permitted in this Agreement.
- e) Transfer or assign the Software and the rights under this agreement to another party without the express written consent of Caselle.

Any attempt to do any of the above (a to e) shall void and terminate this Agreement.

### Term

This Software Use Agreement is and shall be effective from the date of full execution and shall remain in force until terminated. You may terminate this Agreement at any time by notifying Caselle in writing at least 30 days prior to the date of termination Your Right terminates automatically if you materially fail to comply with any terms or conditions of this Agreement.

### Warranty

Caselle warrants that it has sufficient right and title to the Software to grant You this Right. For one (1) year from the date of receipt of the Software ("Warranty Period"), Caselle also warrants the Software media to be free from defects in materials and workmanship under normal use, and Software operation will substantially conform to the specification published by Caselle. If an error or a defect in the Software or its media becomes apparent within the Warranty Period You must promptly notify Caselle, in writing, describing the defect. Upon confirming the error or defect Caselle will, at its exclusive option, repair or replace the item or refund the price paid for the defective item. Caselle does not warrant that the functions contained in the Software will meet Your requirements or that the operation of the Software will be uninterrupted or error free. The warranty does not cover Software modified by anyone other than Caselle and problems with, or caused by, computer hardware or non-Caselle software. This limited warranty is VOID if failure of the licensed Software has resulted from accident, abuse or misapplication.

### **Disclaimers and Limitations of Warranty and Remedies**

EXCEPT AS SPECIFICALLY STATED IN THE WARRANTY SECTION OF THIS AGREEMENT, THE SOFTWARE IS LICENSED "AS IS" WITHOUT ANY OTHER WARRANTY, EXPRESS OR IMPLIED, INCLUDING. BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL CASELLE BE LIABLE FOR ANY INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES, INCLUDING, BUT NOT LIMITED TO, LOSS OF ANTICIPATED PROFITS, REVENUE OR SAVINGS. BUSINESS INTERRUPTION OR LOSS OF BUSINESS INFORMATION, ARISING FROM THE USE OF OR INABILITY TO USE THE SOFTWARE OR BREACH OF ANY EXPRESSED OR IMPLIED WARRANTY, EVEN IF CASELLE OR ITS AGENT HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS SHALL APPLY NOTWITHSTANDING THE FAILURE OF AN ESSENTIAL PURPOSE OF ANY LIMITED REMEDY. CASELLE'S AGGREGATE LIABILITY UNDER THIS AGREEMENT FOR DAMAGE WILL NOT, IN ANY EVENT, WHETHER BASED UPON CONTRACT, NEGLIGENCE, STRICT LIABILITY IN TORT, WARRANTY, OR ANY OTHER BASIS, EXCEED THE LICENSE FEES PAID BY YOU FOR THE LICENSED SOFTWARE GIVING RISE TO SUCH LIABILITY.

### Returns

a) No returns will be accepted without a written request to Caselle. To receive full credit, less the cancellation fee (set forth below), such requests must be made in writing to and received by Caselle's corporate office within thirty (30) days of this agreement. No returns will be considered for credit until appropriate notice has occurred within the time limits specified and all related materials are returned to Caselle's corporate office within ten (10) days of notice.

b) Pre-approved returns occurring after the thirty-day period has lapsed will be allowed 75% credit, if such requests are made in writing to and received by Caselle's corporate office within sixty (60) days of this agreement. Any returns attempted after the sixty-day period has lapsed will receive no credit.

c) A minimum cancellation fee of 10% will be assessed to all preauthorized returns.

d) In addition, You agree that You will return all written materials received from Caselle, including program materials, instruction manuals, and any and all training materials to Caselle.

### General

a) This Agreement shall be governed and construed in accordance with the laws of the State of Missouri and You hereby consent to the jurisdiction of State and Federal courts in Missouri. If any part of this Agreement violates applicable law, that part shall be deemed to be amended to the extent necessary to comply with the law.

b) This Agreement constitutes the entire Agreement between Caselle and You and supersedes any prior Agreement or understanding, written or oral, relating to the subject matter of this Agreement. Except as provided herein, this Agreement may not be amended or supplemented except in writing and properly executed by both parties.

c) If any provision of this Agreement shall be adjudged by a court to be void or unenforceable, the same shall in no way affect any other provision of this Agreement or the validity or the enforceability of this Agreement.

d) All rights and remedies provided herein are cumulative and are in addition to all other rights and remedies available at law or equity.

e) In the event that either party successfully takes legal action to enforce any provision of this Agreement the unsuccessful party shall pay full costs and expenses of such action, including reasonable attorney's fees.

f) Any notice required by this Agreement shall be deemed to have been properly given if sent by registered or certified mail to the address set forth in this Agreement.

g) The waiver of any breach or default of this Agreement shall constitute a waiver only as to such particular breach or default and shall not constitute a waiver of any other breach or default. Failure to act by either party in exercising any right, power, or remedy under this Agreement, except as specifically provided herein, shall not operate as a waiver of any such right, power or remedy, and will not affect the validity of the whole or any part of this Agreement, or prejudice such party's right to take subsequent action.

h) Neither party shall be held liable for delays in any of its performance resulting from acts of God, war, civil disturbance, court order, labor dispute or any other cause beyond its control. i) The relationship of the Parties shall be solely that of independent contractors. No partnership, joint venture, employment, agency or other relationship is formed, intended or to be inferred under this Agreement. Neither party to this Agreement shall attempt to bind the other, incur liabilities on behalf of the other, act as agent of the other, or authorize any representation contrary to the foregoing.

(j) This Agreement is binding upon and shall inure to the benefit of the parties, their successors and assigns. However, this Agreement is not assignable by you. This Agreement is personal to you and neither the Agreement, nor the rights or duties hereunder, may be voluntarily or involuntarily, directly or indirectly, assigned or otherwise transferred without the prior written consent of Caselle. Any unauthorized assignment or transfer shall constitute a breach hereof and shall be voidable by Caselle.

663884 18/04



Caselle® Hosted Software & Services Proposal

# City of Moberly, MO

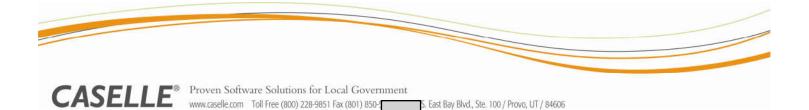
July 2, 2020



WS #9.

# **Proposal Summary**

License Type	Hosted
Total Training at Caselle	\$16,575
Total Setup	14,450
Total Conversion	27,800
Total Investment	\$58,825


The total proposal price of \$58,825 is required with order. Hosted Maintenance & Support will be \$3,250 per month for ten workstations.

I have read and agree to all terms & conditions proposed herein. I understand if the City of Moberly is unable to provide data to Caselle in the requested format, additional fees will apply.

Signature

Printed Name & Title

Date



314

# Caselle® Hosted Software & Services Proposal City of Moberly, MO July 2, 2020

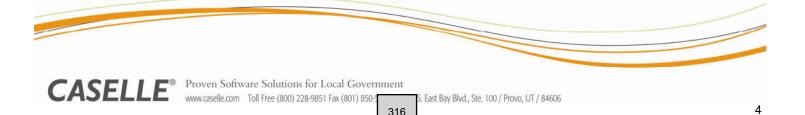
# **Proposal Detail**

<i>Caselle</i> [®] Application Software	License Type	Training at Caselle	Setup	Conversion	Total
General Ledger	Hosted	\$2,250	\$700	\$3,900	\$6,850
Budgeting	Hosted	Included	-	-	-
Bank Reconciliation	Hosted	Included	-	1,000	1,000
miExcel GL	Hosted	Included	1,000	-	1,000
Accounts Payable	Hosted	550	500	2,000	3,050
AP Direct Pay	Hosted	Included	-	-	-
Accounts Receivable	Hosted	1,125	500	2,222	3,847
Check on Demand	Hosted	Included	250	-	250
Utility Management	Hosted	3,375	1,500	10,600	15,475
Utility Electronic Reading Interface	Hosted	Included	250	-	250
Utility Service Orders	Hosted	550	500	-	1,050
Online Mapping	Hosted	-	-	-	-
Utility Backflow Management	Hosted	750	1,500	300	2,550
miExcel UM	Hosted	Included	1,000	-	1,000
Cash Receipting	Hosted	550	500	-	1,050
Online/Electronic Payments	Hosted	500	2,250	-	2,750
Business License	Hosted	550	500	778	1,828
Project Accounting	Hosted	2,250	500	-	2,750
Caselle Document Management	Hosted	3,000	2,000	-	5,000
Community Development - Permitting	Hosted	1,125	1,000	7,000	9,125
Ten (10) Concurrent User Licenses	Included	-	-	-	Included
Grand Total	Hosted	\$16,575	\$14,450	\$27,800	\$58,825



CASELLE® Proven Software Solutions for Local Government www.caselle.com Toll Free (800) 228-9851 Fax (801) 850-1 www.caselle.com Toll Free (800) 228-9851 Fax (801) 850-

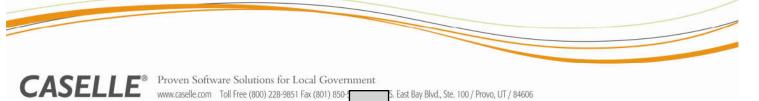
S. East Bay Blvd., Ste. 100 / Provo, UT / 84606


315

WS #9.

# **General Information**

In order to further define and clarify the various products and services offered in this proposal, the following notes will apply based on the software applications and/or services quoted:


Training	Unless otherwise quoted, training will take place at Caselle's Education Center, located in Provo, Utah. Your staff will be trained on your data. Approximately one half of the training time will be spent reviewing and validating your converted data files. Some training may take place online. Training hours are from 8:30 a.m. to 4:30 p.m., Monday through Friday.
Xpress Bill Pay	Xpress Bill Pay is Caselle's authorized online/electronic payment vendor. The monthly credit card and electronic payment transaction fees are billed separately by Xpress Bill Pay.
Caselle Document Management	The subscription based Caselle Document Management includes: Full Text Search, Encryption, Drag and Drop, Role-Based Security, Versioning, Document Retention, Audit Trail, OCR (10,000 pages/month), three (3) Concurrent User Licenses, three (3) Advanced Workflow Licenses and the Caselle Integration.



# Caselle[®] Hosted Software & Services Proposal City of Moberly, MO July 2, 2020

Hosted Maintenance & Support Breakdown	Monthly
General Ledger, Budgeting, Bank Reconciliation	\$206
miExcel GL	38
Accounts Payable	206
AP Direct Pay	101
Accounts Receivable	206
Check on Demand	83
Utility Management	206
Utility Electronic Reading Interface	101
Utility Service Orders	101
Online Mapping	15
Utility Backflow Management	169
miExcel UM	56
Cash Receipting	169
Online/Electronic Payments	100
Business License	124
Project Accounting	169
Caselle Document Management	150
Community Development - Permitting	300
Ten (10) Concurrent User Licenses	750
Total	\$3,250

Note: A discount of 5% will apply if this is paid on an annual basis.



5

# Caselle[®] Hosted Software & Services Proposal City of Moberly, MO July 2, 2020

# **Implementation Services**

Data conversion is an involved, sometimes complicated procedure that must be completed with a high level of accuracy and precision. To make this process run smoothly, Caselle requires your assistance in providing the required materials for preliminary data conversion, offering clarification as needed during the conversion process, and supplying updated materials for the final data conversion. *Please read the following information carefully.* 

# **Gathering Preliminary Data**

Assemble the following information and send it to Caselle.

- Complete the Information Worksheets during each phase of the conversion.
- Provide data to be converted.
  - You may need to clarify the data, as needed, during the conversion process.
  - Caselle will not convert the prior period detail during data conversion unless optional history conversion is specified in the contract.
- Send **printed or PDF reports** to verify account balances at the time data is sent to Caselle for preliminary

conversion and again for final data conversion.

### Submitting Conversion Data

You will be provided a file layout for each application that will have data conversion. The file layout details the required and/or optional fields that Caselle will need to provide the conversion. The cost of conversion quoted in this proposal is based on your submission of the necessary data in the requested formats. If data cannot be supplied in this format, additional costs will be billed to get your existing data into the desired formats ready for conversion and could delay any proposed timeline. We may also need file layouts or descriptions of tables and where all of the necessary information is located within your existing data to complete the conversion.

### Data Conversion Timeline

The timeline begins when the requested data and all required preliminary information has been received by Caselle. The timeline to complete an accurate data conversion can range from 120 - 180 days. This is dependent upon the condition of the data and the client's willingness to review the preliminary information for accuracy, including information requested in the discovery phase of the conversion.

### Scheduling Training

**Important!** Training will only be scheduled after Caselle has completed the mock conversion and the customer has reviewed and approved the conversion.

After training is scheduled, a representative from the Implementation team will review the remaining steps to ensure a successful implementation, prior to going Live on Caselle.





Proven Software Solutions for Local Government www.caselle.com Toll Free (800) 228-9851 Fax (801) 850-

318

5. East Bay Blvd., Ste. 100 / Provo, UT / 84606

# Software Setup & Data Conversion

This section contains the items, per directory, that will be setup and converted in each module. Since estimating the exact quantity may be difficult, we will adjust the calculated conversion cost if the actual number of items converted is greater than or less than 25% of the original estimate.

Data conversion requires that data be submitted in the required format. It is the responsibility of the customer to provide data to Caselle. Conversion services to retrieve or modify your data to the required formats are available at an additional cost. These services will be billed at Caselle's current hourly rate and are not included in this proposal.

- **General Ledger Setup** Set up the control table in the General Ledger and Account Masks with the appropriate segments for funds, departments, revenue sources, object codes, and other account classifications.
  - Modify the existing chart of accounts to utilize the advanced reporting features available with Caselle, if needed.
  - Format five standard financial statements:
    - Balance Sheet with Revenue/Expenditures compared to budget
    - Allocation Reconciliation
    - Income Statement (All Funds)
    - Balance Sheet (All Funds)
    - Fund Summary Income Statement

**Note:** Additional fees may be required to set up additional financial statements.

- Establish all necessary journals for interfaced subsystems to allow the subsystems to update transactions to the General Ledger.
- Create a custom Checklist to document your organization's daily, monthly, and fiscal year-end steps; as well as budget procedures.
- Data Conversion
   The current year-to-date trial balance and budget will be entered and balanced to your existing system. Caselle will provide supporting reports that document the balance sheet accounts, revenues, and expenditure balance for auditing purposes. A trial balance period will be established and all periods from that period forward will contain detail transaction information, if provided.

1,950 accounts are included

Bank Reconciliation•Bank reconciliation for the desired cash accounts with outstanding<br/>deposits and checks will be established. A bank reconciliation will be<br/>completed and balanced to cash for the appropriate beginning period.

319

2 bank accounts are included



Proven Software Solutions for Local Government www.caselle.com Toll Free (800) 228-9851 Fax (801) 850-

5. East Bay Blvd., Ste. 100 / Provo, UT / 84606

# Caselle® Hosted Software & Services Proposal City of Moberly, MO July 2, 2020

Accounts Payable Setup	<ul> <li>Establish vendor defaults.</li> <li>Format one check form with requested stub detail.</li> <li>Create a Checklist to document Accounts Payable procedures, including the printing of 1099's.</li> </ul>
Data Conversion	<ul> <li>Each vendor's information will be converted. This information includes the vendor name, street address, mailing address, remittance addresses, city, state, zip code, and 1099 status.</li> <li>Exception: 1099 balances can be established, if provided.</li> </ul>
	1,000 vendors are included
AP Direct Pay Setup	<ul> <li>Set up header and batch information with the appropriate ACH/NACHA file information.</li> <li>Set up vendors with necessary routing and account numbers.</li> <li>Format one direct pay voucher.</li> </ul>
Accounts Receivable Setup	<ul> <li>Set up the appropriate billing categories and penalty rates.</li> <li>Format standard reports for reporting and balancing of customer accounts.</li> <li>Format one of each of the following: statements, invoices, and delinquent notices.</li> <li>Create a Checklist to document Accounts Receivable procedures.</li> <li>Additional form layouts for statements, invoices, and delinquent notices will be billed at the rate of \$100 per form. Forms that have multiple pages will be billed \$100 for each additional page included in the form.</li> </ul>
Data Conversion	<ul> <li>Each customer's account information will be converted. This information includes the customer's name, street address, mailing address, bill to information, city, state, and zip code.</li> <li>Customer balances will be converted.</li> </ul>
	1,111 accounts are included
Check on Demand	• Format the check form.

Setup



8

S. East Bay Blvd., Ste. 100 / Provo, UT / 84606

www.caselle.com Toll Free (800) 228-9851 Fax (801) 850-5

Utility Management Setup	<ul> <li>Set up services, taxes, rate tables, and other fees for billing.</li> <li>Format one form for each of the following: utility bills, delinquent notices, and shut-off notices.</li> <li>Set up default reports for billing, meter proofing, and reviewing customer information.</li> <li>Create table lists to generate customer labels, reports for new connects, terminated customers with credit balances, and terminated customers with a zero balance.</li> <li>Create a Checklist to document daily, monthly, and billing procedures.</li> <li>Additional forms will be billed at the rate of \$100 per form. Forms that have multiple pages will be billed \$100 for each additional page included in the form.</li> </ul>
Data Conversion	<ul> <li>Each customer's information will be entered and verified. This information depends on what is provided. Information will be converted as is and normally includes the customer number, name, service address, mailing address, city, state, zip code, telephone numbers, meter number, location, balances, and previous reads.</li> <li>All appropriate transactions for balancing the billing will be converted.</li> <li>Balancing totals, billing totals, receivable by service totals, if provided, will be balanced to the existing system using supporting reports.</li> <li>Caselle will provide reports of the converted data for auditing purposes.</li> <li>5,300 meters or customers are included</li> </ul>
Utility Electronic Reading Interface Setup	<ul> <li>Create the appropriate import/export formats and test with the interfaced meter reading equipment.</li> </ul>
Service Orders Setup	<ul> <li>Set up the Service Order options (including user, department, and actions).</li> <li>Customize Service Order data entry screens.</li> <li>Format three Service Order form layouts.</li> <li>Set up the Utility Management interface.</li> <li>Additional form layouts will be billed at the rate of \$100 per form. Forms that have multiple pages will be billed \$100 for each additional page included in the form.</li> </ul>



9

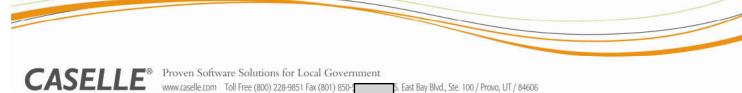
321

S. East Bay Blvd., Ste. 100 / Provo, UT / 84606

www.caselle.com Toll Free (800) 228-9851 Fax (801) 850-

# Caselle® Hosted Software & Services Proposal City of Moberly, MO July 2, 2020

Backflow Management Setup	<ul> <li>Assembly types, approved assembly models, action codes, notification cycles, organization, testers, and a maximum of eight forms will be set up. Forms include:         <ul> <li>Testers Certification Notice</li> <li>Testing Renewal Notifications</li> <li>Assembly Install Notifications</li> <li>Assembly Failure Notices</li> </ul> </li> </ul>
Data Conversion	• All active backflow assemblies will be attached to the utility location table including all applicable information to start the tracking process.
	100 assemblies are included
	No historical assembly information will be included.
Cash Receipting Setup	<ul> <li>Set up the General Ledger accounts for bank deposits and standard receipting revenue.</li> <li>Set up category and distribution codes.</li> <li>Set up payment types, for example, check, cash, and credit card, and associated reports for balancing.</li> <li>Create default reports to assist in daily operation.</li> <li>Create a Checklist to document procedures for daily cash receipting transactions, updates, and posting of receipts.</li> </ul>
Online/Electronic Payments Setup	<ul> <li>Set up Online and Electronic Payment Processing (credit cards, electronic funds transfer, and online bank bill pay consolidation).</li> <li>Set up Utility Direct Pay.</li> <li>Set up Xpress Bill Pay, Caselle's authorized electronic payment vendor, including online bill presentation, online bill history, automatic recurring payments, and payment wallets with full integration to Cash Receipting.</li> </ul>
Business License Setup	<ul> <li>Format one form layout for each of the following: business license, renewal letter, delinquent notice, and application.</li> <li>Set up billing rates, billing frequencies, license types, and business activities.</li> <li>Additional forms or licenses will be billed at the rate of \$100 per form. Forms that have multiple pages will be billed \$100 for each additional page included in the form.</li> </ul>




www.caselle.com Toll Free (800) 228-9851 Fax (801) 850-

S. East Bay Blvd., Ste. 100 / Provo, UT / 84606

Data Conversion	<ul> <li>All applicable business information and account balances will be converted.</li> </ul>
	<ul> <li>Business information includes the owner, manager, license type, and business codes, if provided.</li> </ul>
	All standard reports will be set up.
	778 businesses are included
Project Accounting	<ul> <li>Set up organization settings and all system defaults.</li> </ul>
Setup	<ul> <li>Determine job number mask with segments and values for all projects.</li> <li>Determine and set up General Ledger accounts for WIP, depreciation,</li> </ul>
	<ul> <li>accumulated depreciation, and clearing accounts for labor and purchases.</li> <li>Interface all applicable Caselle applications.</li> </ul>
	<ul> <li>Set up the Crew Rate, Departments, and Jobs for creation, approval, and completion procedures.</li> </ul>
Community Development Setup	• Setup services will assist customers in initial software configuration such as codes, rates, permit types, fees, etc. A representative will provide consulting and software setup via telephone and email prior to product shipping. All parcel data and current owner information will be entered when submitted in the requested format. Property Parcel Data does not include data export from any other system or custom conversion. Property information will need to be entered into the Caselle Load Table by the customer.
	<ul> <li>If customer completes the Caselle Load Tables for Property and Owner, Contractor and open Permits, there will be no conversion charges.</li> </ul>

• If Caselle Load Tables are not used and data is submitted in another format, there will be a \$2.00 charge per property, contractor, open permit record, and historical record in addition to the setup fee.



# Caselle[®] Hosted Software & Services Proposal City of Moberly, MO July 2, 2020

- All property and owner parcel data will be entered when submitted in the requested format.
  - All Open Permits will be entered when submitted in the requested format.
  - Contractor information will be entered when submitted in the requested format.
  - If historical data needs to be converted, data will be loaded into a Caselle Archive History Table as read only and can be exported or viewed in Property Inquiry and Table List reports. Historical data from existing system will not be converted as Caselle transactions.
  - Caselle Load Tables will need to be populated by the customer.
  - All needed forms will be billed at the rate of \$100 per form. Forms that have multiple pages will be billed \$100 for each additional page included in the form.

3,500 properties are included

### HISTORICAL CONVERSION IS AVAILABLE ON A PER-BID BASIS AND IS NOT INLCUDED IN THIS QUOTE.

History conversion is conditional upon the data being provided into the DATA LOAD TABLES. With conversion of history the customer is responsible to provide supporting reports for any historical data to be used to verify the accuracy of the conversion of historical data. **Additional costs will apply if third party resources are required.** 

History conversions can be completed, however all history that is converted is unique and it does not look like it was generated in Caselle. It will not have linking records for normal Inquiry functions and reports that are normally generated in Caselle. *All of these considerations are discussed with you as well as reasonable expectations, depending upon the accuracy of the data provided in the Load Tables.* **Every effort is made for the history to be accurate and useful, but there are limitations.** Costs quoted below are negotiable once we understand the true scope of the project and if data can be provided as requested above.

### **General Ledger History Conversion**

Includes the Annual Budget for each year specified and individual transaction amounts for each year of history. Transactions are not separated into appropriate journals within Caselle subsystems. Normally, system year-end calculations are not handled the same in Caselle as existing legacy systems and require time and effort to analyze for accuracy. If individual transactions are too large or not available, the period amount for each General Ledger Account will be converted. Bank reconciliation's will not be completed for previous periods.

Three Years — \$1,500 Ten Years — \$10,000



Proven Software Solutions for Local Government www.caselle.com Toll Free (800) 228-9851 Fax (801) 850-324

S. East Bay Blvd., Ste. 100 / Provo, UT / 84606

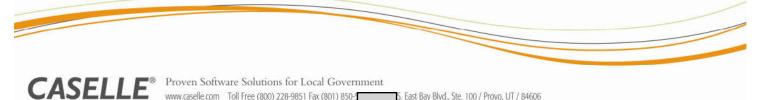
# **Accounts Payable History Conversion**

Vendor information is current. Historical remittance information will not be converted. Individual invoices and checks presented in the load tables tied to each other are able to be converted. If invoices are reflected as 1099, the vendor type information will be converted. Open or unpaid invoice balances will not be verified at year end.

1099 vendor information, if provided, will be balanced to YTD amount at time of "Go Live" with YTD balances. Purchases and Requisition history will not be converted.

Three Years — \$1,500 Ten Years — \$7,500

# **Utility Billing History Conversion**


Current active customer information is converted. Normally only inactive or final billed accounts with balances are recommended to keep in the system. Too many zero balance accounts may cause system performance issues. Service location information is converted for active accounts. Historical information for service address, account changes, service orders or meter changes will not be converted.

Meter information includes readings and usage for the specified number of periods. Meter change outs from property to property are not converted.

If transactions are identifiable and provided in the load tables, billings, adjustments and payments will be converted. If payment allocation detail is not available, payments will be allocated between the billed services based upon an order of allocation specified by the customer or applied to first service. Routines within Caselle will be used to balance or apply payments and credits. (These allocations may not match the original allocation when the payment was made.) Historical conversions require a previous balance transaction to be calculated to bring account into appropriate aged balance and will be in the history of the account.

Three Years — \$2,000 Ten Years — \$10,000

History for other utility related applications such as Service Orders is not provided.



13



Agenda Item:	Engineering Design Scopes of Work
Summary:	Jacobs Engineering Group, Inc. and City staff have worked to develop scopes of work for professional engineering services to design several projects. These projects are the design of the Morley Pump Station Retrofit and Force Main Extension, The North Morley Water Main Loop, and the design of the Sturgeon and Rollins Water Main Replacement.
Recommended Action:	Direct staff to develop a resolution for adoption at the next regular Council meeting.
Fund Name:	Capital Improvement Trust
Account Number:	304.000.5409
Available Budget \$:	EnterTextHere

ATTACHMENTS:		Roll Call	Aye	Nay
Memo Staff Report Correspondence	Council Minutes Proposed Ordinance Proposed Resolution	<b>Mayor</b> MS <b>Jeffrey</b>		
Bid Tabulation P/C Recommendation	Attorney's Report Petition	Council Member M S Brubaker		

P/C Minutes	Contract	M S Kimmons			WS #10.
Application Citizen	Budget Amendment Legal Notice	M S <b>Davis</b> M S <b>Kyser</b>			
Consultant Report	Other		Passed	Failed	

ATTACHMENTS:		Role Call	Aye Nay
Memo	Council Minutes	Mayor	
Staff Report Correspondence	<u>x</u> Proposed Ordinance Proposed Resolution	MSJeffrey	
Bid Tabulation	Attorney 327 ort	Council Member	

Stifel Tower 501 North Broadway St. Louis, Missouri 63102 United States T +1.314.335.4000 F +1.314.335.5104 F +1.314.335.5141 www.jacobs.com

July 2, 2020

Mary West-Calcagno Director of Utilities City of Moberly 101 West Reed Street Moberly, MO 65270

#### Subject: North Morley Water Main Loop

Dear Mary:

Jacobs Engineering Group, Inc. (Jacobs) is pleased to present our proposal to provide the City of Moberly (City) with Professional Engineering Services to design the North Morley Water Main Loop. Approximately 4,400 linear feet of existing 6-inch water main will be replaced with a 12-inch water main thereby increasing the capacity of the system in the vicinity of the improvement (see attached exhibit).

# SCOPE

# **Existing Conditions Survey**

Conduct a property and topographic survey along the proposed water main, including the determination of horizontal and vertical control to be utilized throughout the project.

- 1) Field run topographic survey. Topography includes ground elevations and existing physical improvements within the survey areas. Survey includes location of all building, structures and other physical improvements located within the survey area.
- 2) Contact Missouri-One-Call to provide the locations of existing utilities within the project limits. The locations of utilities within the project limits shall be field surveyed and incorporated into the base drawings for the project. After utilities have been marked, Jacobs will make site visit to verify final alignment for development of 90% design documents.
- 3) Dry utility locations for electric, telephone/cable and gas include surface indications of visible utilities, including manholes, poles, vaults, transformers and pedestals. Subsurface utility markings (established by Missouri One-Call) will be field located and shown on the topographic survey base drawings.



- 4) Wet utilities include water lines, sanitary sewer and storm sewer with inverts of pipe, pipe size with percent of slope for each sewer run shown. Wet utility locations include all surface indication including valves, vaults and fire hydrants.
- 5) Contour intervals will be 1-foot.
- 6) Establish property lines and property ownership.

#### North Morley Water Main Loop

**Task 1 – Kick-Off Meeting.** Jacobs will meet with City staff for a kick off meeting to review the project scope and define the project.

**Task 2 - Develop 90% Design Documents.** Jacobs will develop 90% Design Documents. The 90% submittal will be essentially a final set of documents that will include the following drawings:

- 1) Cover Sheet/Index
- 2) Sheet Layout
- 3) General Notes & Symbols
- 4) Site/Piping Plan
- 5) Water Main Plan & Profiles (6 sheets)

The 90% documents will also include technical specifications and front-end contract documents. The technical specifications will be in CSI format and the front-end bidding documents will be similar to what Jacobs has prepared on City projects following the EJCDC format. Jacobs intends to refer to the City's standard specifications and details in lieu of developing project specific details and water main related technical specifications.

**Task 3 – 90% Design Review Meeting.** After the 90% design documents (including an OPCC) have been submitted to the City for review, a meeting will be scheduled with City personnel to discuss the 90% design documents.

**Task 4 – Final Plans and Specifications.** Based on the comments from the review meeting in Task 3 final plans and specifications will be developed and issued to the City for Bid.

**Task 5 – Permits.** Upon completion of the final plans and specifications in Task 4, Jacobs will develop the application and the submittal package to Missouri Department of Natural Resources for a Construction Permit. Jacobs anticipates no other permits will be required for this project. We will also submit plans to the appropriate utilities for their review and approval.

Task 6 - Bid Phase Services. Jacobs will provide the following bidding phase services:

- 1) Conduct a pre-bid meeting at City Hall.
- 2) Coordinate distribution of plans and specifications to prospective bidders and manage the plan holder's list.



- 3) Prepare and distribute any necessary addendums.
- 4) Assist the City in responding to questions from potential bidders during the Bid period and prepare addenda, as required.
- 5) Attend the bid opening. Review the bids and provide the City with a recommendation for award.

#### Task 7 - Construction Phase Services.

Jacobs will provide Construction Phase Services, as described in the tasks below.

- 1) Pre-Construction Meeting. Jacobs will attend a pre-construction meeting with the City and the contractor selected for the project.
- 2) Shop drawing review for submittals during the construction period. Review detailed construction drawings and shop drawings, samples and other information submitted by Contractors, for conformance with the design concept and the concept of the information given in the Contract Documents. Such data will be recommended for approval, returned for revision, or rejected. This task includes the checking of shop and mill test reports of materials and equipment. Such review and recommendation shall not extend to means, methods, sequences, techniques or procedures of construction, or to safety precautions and programs incident thereto as such are the responsibility of the Construction Contractor.
- 3) Respond to the contractor's RFIs (Request for Information). Scope includes responses of up to five RFIs.
- 4) Jacobs will provide part-time Resident Project Representative (RPR) services during the construction. A separate Construction Inspector will be provided by the City. The RPR will observe the progress and quality of the construction work to determine in general if the work is proceeding according to the Contract Documents. Jacobs will consult with City representatives and maintain contact by telephone and correspondence during the course of the project.
- 5) While on site, the RPR is responsible for seeing that the project is constructed in accordance with the drawings and specifications. However, Jacobs shall not be responsible for the failure of the Contractor(s) to perform the work in accordance with the Contract Document or the daily quality of Contractor's work. Jacobs will not bear any responsibility or liability for defects or deficiencies in the work or for the failure to so detect. The RPR shall provide observation of the Contractor, provide field administration on the work site, and act as the focal point for communication and correspondence with the Contractor at the field level. The RPR shall:
  - a) Provide on-site administration and surveillance, as outlined herein, of the construction activities on the Project.
  - b) If the Contractor has not corrected unsatisfactory work after request of the RPR, advise City of work that remains unsatisfactory, faulty or defective or does not conform to the Contract Documents.
  - c) Receive Contractor's suggestions for modifications in drawings or specifications and report them, with comments, to the City.



- d) While on site, keep a diary or log book, in ink, recording hours on the job site, weather conditions, labor and equipment employed on the job, the location and nature of work being performed, the progress of the work, instructions given, accidents, data relative to questions of extras or deductions, list of visiting officials and representatives of manufacturers, fabricators, suppliers and distributors, daily activities, decisions, observations in general and specific observations in more detail as in the case of observing test procedures.
- e) Advise the City, in advance, of scheduled major tests, inspections or the start of important phases of the work.
- 6) At a time near substantial completion of the work, prepare and submit to the Contractor a "punchlist" of items which require correction or completion.
- 7) Receive and record information as it is submitted by the Contractor regarding changes from the contract drawings made during progress of the work. Incorporate such changes on a set of contract plans to be used in preparing record drawings of the project.
- 8) Except upon written instructions of City, the RPR SHALL NOT:
  - a) Authorize any deviation from the Contract Documents, or approve any substitution of materials or equipment.
  - b) Neither advise nor issue directions relative to any aspect of the means, methods, techniques, sequences or procedures of construction unless such is specifically called for in the Contract Documents.
  - c) Neither advise nor issue directions as to safety precautions and programs in connection with the work. However, if on site, Jacobs will report immediately to City upon the occurrence of any accident. Record and obtain all possible information concerning circumstances, weather, unsafe conditions, etc. Obtain pictures, if available, for the project records. This information shall be forwarded immediately to City.
  - d) Authorize occupancy, acceptance or conditional acceptance.
  - e) Participate in specialized field or laboratory tests, except as specifically authorized to do so by the Contract Documents.
  - f) Direct a Contractor to do work at a specific time or in a certain way unless it is an emergency that would otherwise endanger life or property.
- 9) Record Drawings and Certification of Construction Complete. Jacobs will provide record drawings for the project based on information provided by the contractor and recorded during construction. Jacobs will also certify construction is complete and in accordance with MDNR approved plans and specifications as required by MDNR.



#### **FEE PROPOSAL**

Our proposed fee the work described herein is a not to exceed cost of \$89,958. This fee includes only those services outlined in our proposal. Additional services can be provided if requested by the City.

Existing Conditions Survey	\$19,915
Detailed Design	\$36,219
Bid Phase Services	\$4,791
Construction Phase Services	\$27,513
Direct Costs - Travel	\$1,320
Direct Costs - Printing	\$200
Total Not to Exceed Cost	\$89,958

#### SCHEDULE

If the City is in agreement with this approach, we would provide a schedule upon notice of acceptance of our proposal.

#### **ASSUMPTIONS / CLARIFICATIONS:**

This proposal is based on the following assumptions and clarifications:

- 1. Jacobs will refer to the City's standard specifications and details wherever appropriate.
- 2. Pre-Design memorandums will not be prepared for the water main projects as the sizing is based on existing model recommendations and the routes have already been determined.
- 3. Two full size hard copies of the plans and specifications will be provided to the City for each project for the 90% review. Also, two full size sets of the Issued for Bid plans and specifications for each project will be provided to the City, MDNR (construction permit) along with two full size sets submitted to the Dodge and AGC plan rooms.
- 4. Jacobs will provide distribution of the plans and specifications to prospective bidders. Cost for reproduction and shipping of plans and specifications to prospective bidders is not included in the not to exceed cost, and will be charged to the prospective bidder.
- 5. RPR services include one visit every two weeks during water main construction activities. The fee for RPR services is based on:
- a) A 12 week construction duration for the water main installation, 8 hours every two weeks for a total of 48 hours, 6 visits.
- b) RPR services are not required during saw cutting or restoration.



Should the construction scope require a longer duration in the field or the City would like more per week availability, additional funds may be requested.

6. Two sets of record drawings and an electronic media device with both pdf and AutoCAD files

This work will be performed under the proposed Professional Services Agreement currently being reviewed by the City of Moberly. We will endeavor to be as efficient as we can in performing the work to minimize costs. If you have any questions, please let me know. Thank you for the opportunity to continue our long standing support of the City.

**Tobin Lichti** Project Manager 314.422.3336 Tobin.Lichti@Jacobs.com



General Notes:

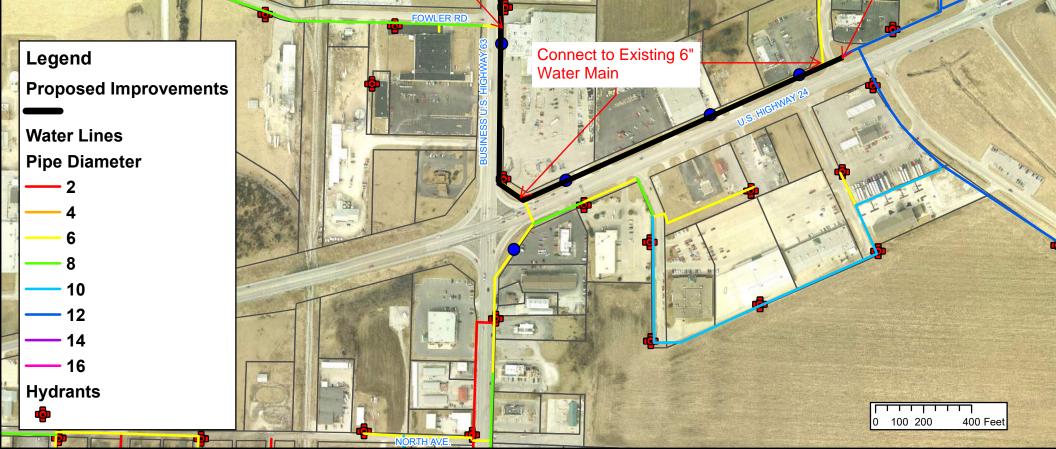
- 1. Assume pavement replacement and granular backfill.
- 2. New hydrants every 500 feet.
- 3. New valves every 500 feet.

•

星德






North Morley Water Main Loop Replace Existing 6" Water Main with 12" PVC Water Main. Approximately 4,400 LF

Connect to Existing 12" Water Main





-



Stifel Tower 501 North Broadway St. Louis, Missouri 63102 United States T +1.314.335.4000 F +1.314.335.5104 F +1.314.335.5141 www.jacobs.com

July 2, 2020

Mary West-Calcagno Director of Utilities City of Moberly 101 West Reed Street Moberly, MO 65270

#### Subject: Sturgeon and Rollins Water Main Replacement

Dear Mary:

Jacobs Engineering Group, Inc. (Jacobs) is pleased to present our proposal to provide the City of Moberly (City) with Professional Engineering Services to design the Sturgeon and Rollins Water Main Replacement. Approximately 5,450 linear feet of existing 10-inch and 14-inch water main will be replaced by a 16-inch water main thereby increasing the capacity of the system in the vicinity of the improvement. The proposed 16-inch water main will also connect to the Wicker Street Elevated Tank (see attached exhibit).

# SCOPE

# **Existing Conditions Survey**

Conduct a property and topographic survey along the proposed water main, including the determination of horizontal and vertical control to be utilized throughout the project.

- 1) Field run topographic survey. Topography includes ground elevations and existing physical improvements within the survey areas. Survey includes location of all building, structures and other physical improvements located within the survey area.
- 2) Contact Missouri-One-Call to provide the locations of existing utilities within the project limits. The locations of utilities within the project limits shall be field surveyed and incorporated into the base drawings for the project. After utilities have been marked, Jacobs will make site visit to verify final alignment for development of 90% design documents.
- 3) Dry utility locations for electric, telephone/cable and gas include surface indications of visible utilities, including manholes, poles, vaults, transformers and pedestals. Subsurface utility markings (established by Missouri One-Call) will be field located and shown on the topographic survey base drawings.



- 4) Wet utilities include water lines, sanitary sewer and storm sewer with inverts of pipe, pipe size with percent of slope for each sewer run shown. Wet utility locations include all surface indication including valves, vaults and fire hydrants.
- 5) Contour intervals will be 1-foot.
- 6) Establish property lines and property ownership.

#### Sturgeon and Rollins Water Main Replacement

**Task 1 – Kick-Off Meeting.** Jacobs will meet with City staff for a kick off meeting to review the project scope and define the project.

**Task 2 - Develop 90% Design Documents.** Jacobs will develop 90% Design Documents. The 90% submittal will be essentially a final set of documents that will include the following drawings:

- 1) Cover Sheet/Index
- 2) Sheet Layout
- 3) General Notes & Symbols
- 4) Site/Piping Plan
- 5) Water Main Plan & Profiles (6 sheets)

The 90% documents will also include technical specifications and front-end contract documents. The technical specifications will be in CSI format and the front-end bidding documents will be similar to what Jacobs has prepared on City projects following the EJCDC format. Jacobs intends to refer to the City's standard specifications and details in lieu of developing project specific details and water main related technical specifications.

**Task 3 – 90% Design Remote Review Meeting.** After the 90% design documents (including an OPCC) have been submitted to the City for review, a remote meeting will be scheduled with City personnel to discuss the 90% design documents.

**Task 4 – Final Plans and Specifications.** Based on the comments from the review meeting in Task 3 final plans and specifications will be developed and issued to the City for Bid.

**Task 5 – Permits.** Upon completion of the final plans and specifications in Task 4, Jacobs will develop the application and the submittal package to Missouri Department of Natural Resources for a Construction Permit. Jacobs anticipates no other permits will be required for this project. We will also submit plans to the appropriate utilities for their review and approval.

Task 6 - Bid Phase Services. Jacobs will provide the following bidding phase services:

- 1) Conduct a pre-bid meeting at City Hall.
- 2) Coordinate distribution of plans and specifications to prospective bidders and manage the plan holder's list.

- 3) Prepare and distribute any necessary addendums.
- 4) Assist the City in responding to questions from potential bidders during the Bid period and prepare addenda, as required.
- 5) Attend the bid opening. Review the bids and provide the City with a recommendation for award.

#### Task 7 - Construction Phase Services.

Jacobs will provide Construction Phase Services, as described in the tasks below.

- 1) Pre-Construction Meeting. Jacobs will attend a pre-construction meeting with the City and the contractor selected for the project.
- 2) Shop drawing review for submittals during the construction period. Review detailed construction drawings and shop drawings, samples and other information submitted by Contractors, for conformance with the design concept and the concept of the information given in the Contract Documents. Such data will be recommended for approval, returned for revision, or rejected. This task includes the checking of shop and mill test reports of materials and equipment. Such review and recommendation shall not extend to means, methods, sequences, techniques or procedures of construction, or to safety precautions and programs incident thereto as such are the responsibility of the Construction Contractor.
- Respond to the contractor's RFIs (Request for Information). Scope includes responses of up to 5 RFIs
- 4) Jacobs will provide part-time Resident Project Representative (RPR) services during the construction. A separate Construction Inspector will be provided by the City. The RPR will observe the progress and quality of the construction work to determine in general if the work is proceeding according to the Contract Documents. Jacobs will consult with City representatives and maintain contact by telephone and correspondence during the course of the project.
- 5) While on site, the RPR is responsible for seeing that the project is constructed in accordance with the drawings and specifications. However, Jacobs shall not be responsible for the failure of the Contractor(s) to perform the work in accordance with the Contract Document or the daily quality of Contractor's work. Jacobs will not bear any responsibility or liability for defects or deficiencies in the work or for the failure to so detect. The RPR shall provide observation of the Contractor, provide field administration on the work site, and act as the focal point for communication and correspondence with the Contractor at the field level. The RPR shall:
  - a) Provide on-site administration and surveillance, as outlined herein, of the construction activities on the Project.
  - b) If the Contractor has not corrected unsatisfactory work after request of the RPR, advise City of work that remains unsatisfactory, faulty or defective or does not conform to the Contract Documents.
  - c) Receive Contractor's suggestions for modifications in drawings or specifications and report them, with comments, to the City.

July 2, 2020 Subject: Sturgeon and Rollins Water Main Replacement

- d) While on site, keep a diary or log book, in ink, recording hours on the job site, weather conditions, labor and equipment employed on the job, the location and nature of work being performed, the progress of the work, instructions given, accidents, data relative to questions of extras or deductions, list of visiting officials and representatives of manufacturers, fabricators, suppliers and distributors, daily activities, decisions, observations in general and specific observations in more detail as in the case of observing test procedures.
- e) Advise the City, in advance, of scheduled major tests, inspections or the start of important phases of the work.
- 6) At a time near substantial completion of the work, prepare and submit to the Contractor a "punchlist" of items which require correction or completion.
- 7) Receive and record information as it is submitted by the Contractor regarding changes from the contract drawings made during progress of the work. Incorporate such changes on a set of contract plans to be used in preparing record drawings of the project.
- 8) Except upon written instructions of City, the RPR SHALL NOT:
  - a) Authorize any deviation from the Contract Documents, or approve any substitution of materials or equipment.
  - b) Neither advise nor issue directions relative to any aspect of the means, methods, techniques, sequences or procedures of construction unless such is specifically called for in the Contract Documents.
  - c) Neither advise nor issue directions as to safety precautions and programs in connection with the work. However, if on site, Jacobs will report immediately to City upon the occurrence of any accident. Record and obtain all possible information concerning circumstances, weather, unsafe conditions, etc. Obtain pictures, if available, for the project records. This information shall be forwarded immediately to City.
  - d) Authorize occupancy, acceptance or conditional acceptance.
  - e) Participate in specialized field or laboratory tests, except as specifically authorized to do so by the Contract Documents.
  - f) Direct a Contractor to do work at a specific time or in a certain way unless it is an emergency that would otherwise endanger life or property.
- 9) Record Drawings and Certification of Construction Complete. Jacobs will provide record drawings for the project based on information provided by the contractor and recorded during construction. Jacobs will also certify construction is complete and in accordance with MDNR approved plans and specifications as required by MDNR.





#### **FEE PROPOSAL**

Our proposed fee the work described herein is a not to exceed cost of \$94,846. This fee includes only those services outlined in our proposal. Additional services can be provided if requested by the City.

Existing Conditions Survey	\$24,024
Detailed Design	\$36,219
Bid Phase Services	\$4,791
Construction Phase Services	\$28,292
Direct Costs - Travel	\$1,320
Direct Costs - Printing	\$200
Total Not to Exceed Cost	\$94,846

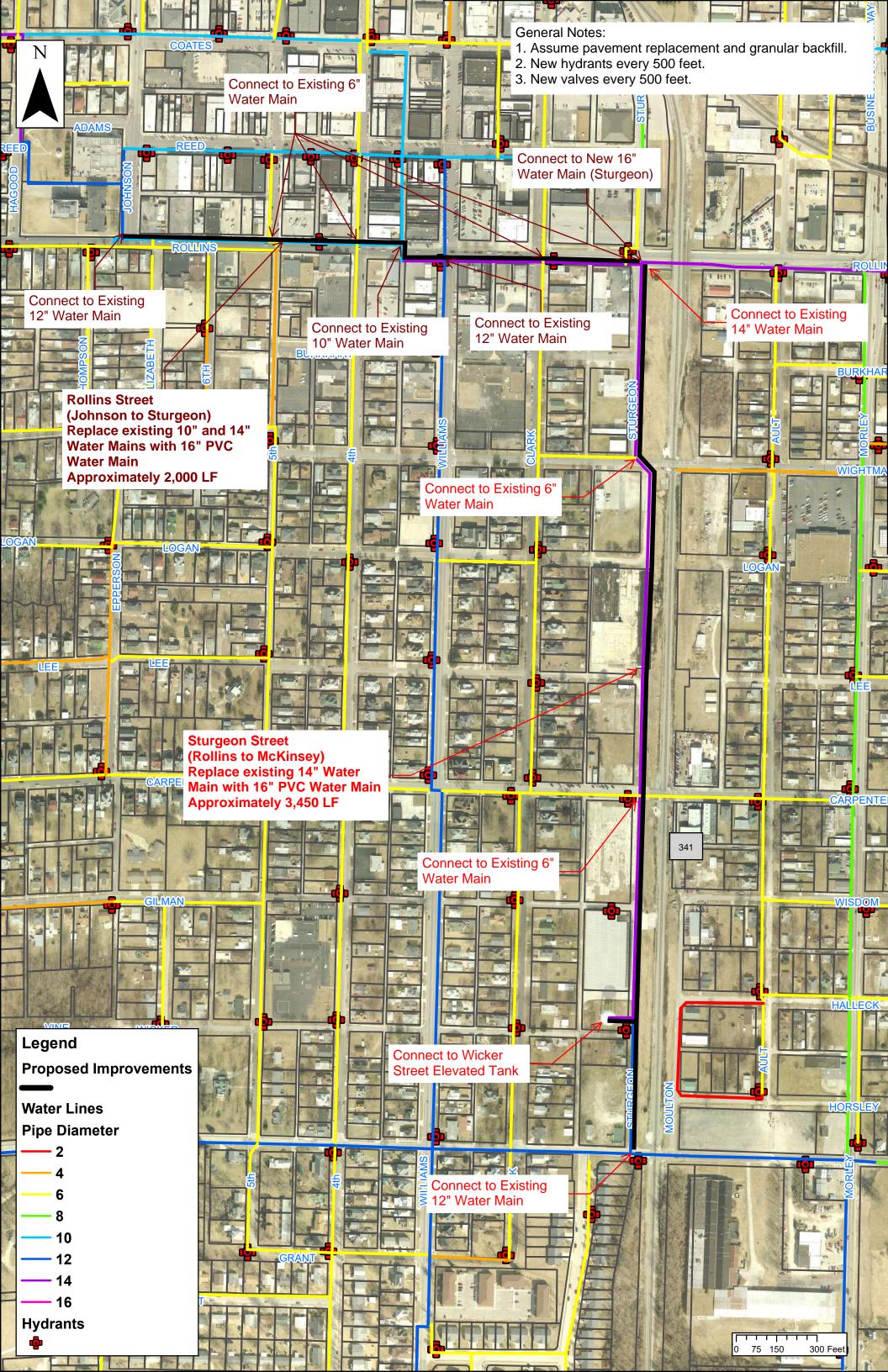
#### SCHEDULE

If the City is in agreement with this approach, we would provide a schedule upon notice of acceptance of our proposal.

#### **ASSUMPTIONS / CLARIFICATIONS:**

- 1. Jacobs will refer to the City's standard specifications and details wherever appropriate.
- 2. Pre-Design memorandums will not be prepared for the water main projects as the sizing is based on existing model recommendations and the routes have already been determined.
- 3. Two full size hard copies of the plans and specifications will be provided to the City for each project for the 90% review. Also, two full size sets of the Issued for Bid plans and specifications for each project will be provided to the City, MDNR (construction permit) along with two full size sets submitted to the Dodge and AGC plan rooms.
- 4. Jacobs will provide distribution of the plans and specifications to prospective bidders. Cost for reproduction and shipping of plans and specifications to prospective bidders is not included in the not to exceed cost, and will be charged to the prospective bidder.
- 5. RPR services include one visit every two weeks during water main construction activities. The fee for RPR services is based on:
- a) A 10 week construction duration for the water main installation, 8 hours every two weeks for a total of 40 hours, 5 visits.
- b) RPR services are not required during saw cutting or restoration.




Should the construction scope require a longer duration in the field or the City would like more per week availability, additional funds may be requested.

6. Two sets of record drawings and an electronic media device with both pdf and AutoCAD files

This work will be performed under the proposed Professional Services Agreement currently being reviewed by the City of Moberly. We will endeavor to be as efficient as we can in performing the work to minimize costs. If you have any questions, please let me know. Thank you for the opportunity to continue our long standing support of the City.

Very truly yours, (

**Tobin Lichti** Project Manager 314.422.3336 Tobin.Lichti@Jacobs.com



Stifel Tower 501 North Broadway St. Louis, Missouri 63102 United States T +1.314.335.4000 F +1.314.335.5104 F +1.314.335.5141 www.jacobs.com

July 2, 2020

Mary West-Calcagno Director of Utilities City of Moberly 101 West Reed Street Moberly, MO 65270

#### Subject: Morley Pump Station Retrofit and Force Main Extension

Dear Mary:

Jacobs Engineering Group, Inc. (Jacobs) is pleased to present our proposal to provide the City of Moberly (City) with Professional Engineering Services to design the Morley Pump Station Retrofit and Force Main Extension. The Morley Street Lift Station is currently a wet pit/dry pit pump station. It has experienced a series of operational and maintenance issues throughout its service. The lift station will be retrofitted as a submersible lift station and the force main will be extended approximately 3,000 linear feet which will create additional capacity in the portion of the collection system to which it currently discharges (see attached exhibit).

# SCOPE

#### **Existing Conditions Survey**

Conduct a property and topographic survey along the proposed force main, including the determination of horizontal and vertical control to be utilized throughout the project.

- 1) Field run topographic survey. Topography includes ground elevations and existing physical improvements within the survey areas. Survey includes location of all building, structures and other physical improvements located within the survey area.
- 2) Contact Missouri-One-Call to provide the locations of existing utilities within the project limits. The locations of utilities within the project limits shall be field surveyed and incorporated into the base drawings for the project. After utilities have been marked, Jacobs will make site visit to verify final alignment for development of 90% design documents.
- 3) Dry utility locations for electric, telephone/cable and gas include surface indications of visible utilities, including manholes, poles, vaults, transformers and pedestals. Subsurface utility markings (established by Missouri One-Call) will be field located and shown on the topographic survey base drawings.

July 2, 2020 Subject: Morley Pump Station Retrofit and Force Main Extension

- 4) Wet utilities include water lines, sanitary sewer and storm sewer with inverts of pipe, pipe size with percent of slope for each sewer run shown. Wet utility locations include all surface indication including valves, vaults and fire hydrants.
- 5) Contour intervals will be 1-foot.
- 6) Establish property lines and property ownership. Scope includes the preparation of legal description of up to five easements.

#### Morley Street Lift Station Retrofit and Force Main Extension

**Task 1 – Kick-Off Meeting.** Jacobs will meet with City staff for a kick off meeting to review the project scope.

**Task 2 - Develop 90% Design Documents.** Based on the Morley Pump Station Retrofit and Force Main Extension Facility Plan (prepared by Jacobs under a separate contract) review meeting Jacobs will develop 90% Design Documents. The 90% submittal will be essentially a final set of documents that will include the following drawings:

- 1) Cover Sheet/Index
- 2) Sheet Layout
- 3) General Notes & Symbols
- 4) Site/Piping Plan
- 5) Miscellaneous Piping & Civil Details
- 6) Mechanical
- 7) Piping and Instrumentation Diagram Symbols and Designation Sheet
- 8) Piping and Instrumentation Diagram
- 9) Electrical Symbol Drawing
- 10) Electrical Site/Grounding Plan
- 11) Electrical One Line Drawing
- 12) Electrical Details
- 13) Structural Details & General Notes
- 14) Mechanical/Structural/Electrical Demolition
- 15) Force Main Plan & Profiles (4 sheets)

The 90% documents will also include technical specifications and front-end contract documents. The technical specifications will be in CSI format and the front end bidding documents will be similar to what Jacobs has prepared on City projects following the 2018 EJCDC format. July 2, 2020 Subject: Morley Pump Station Retrofit and Force Main Extension

**Task 3 – 90% Design Review Meeting.** After the 90% design documents (including an OPCC) have been submitted to the City for review, a meeting will be scheduled with City personnel to discuss the 90% design documents.

**Task 4 – Final Plans and Specifications.** Based on the comments from the review meeting in Task 3 final plans and specifications will be developed and issued to the City for Bid.

**Task 5 – Permits.** Upon completion of the final plans and specifications in Task 4, Jacobs will develop the application and the submittal package to Missouri Department of Natural Resources for a Construction Permit, and the Missouri Department of Transportation for a road crossing permit. Jacobs anticipates no other permits will be required for this project. We will also submit plans to the appropriate utilities for their review and approval.

Task 6 - Bid Phase Services. Jacobs will provide the following bidding phase services:

- 1) Conduct a pre-bid meeting at City Hall.
- 2) Coordinate distribution of plans and specifications to prospective bidders and manage the plan holder's list.
- 3) Prepare and distribute any necessary addendums.
- 4) Assist the City in responding to questions from potential bidders during the Bid period and prepare addenda, as required.
- 5) Attend the bid opening. Review the bids and provide the City with a recommendation for award.

#### Task 7- Construction Phase Services.

Jacobs will provide Construction Phase Services, as described in the tasks below.

- 1) Pre-Construction Meeting. Jacobs will attend a pre-construction meeting with the City and the contractor selected for the project.
- 2) Shop drawing review for submittals during the construction period. Review detailed construction drawings and shop drawings, samples and other information submitted by Contractors, for conformance with the design concept and the concept of the information given in the Contract Documents. Such data will be recommended for approval, returned for revision, or rejected. This task includes the checking of shop and mill test reports of materials and equipment. Such review and recommendation shall not extend to means, methods, sequences, techniques or procedures of construction, or to safety precautions and programs incident thereto as such are the responsibility of the Construction Contractor.
- 3) Respond to the contractor's RFIs (Request for Information). Scope includes responses of up to five RFIs.
- 4) Jacobs will provide part-time Resident Project Representative (RPR) services during the construction. A separate Construction Inspector will be provided by the City. The RPR will observe the progress and quality of the construction work to determine in general if the work is

WS #10.

proceeding according to the Contract Documents. Jacobs will consult with City representatives and maintain contact by telephone and correspondence during the course of the project.

- 5) While on site, the RPR is responsible for seeing that the project is constructed in accordance with the drawings and specifications. However, Jacobs shall not be responsible for the failure of the Contractor(s) to perform the work in accordance with the Contract Document or the daily quality of Contractor's work. Jacobs will not bear any responsibility or liability for defects or deficiencies in the work or for the failure to so detect. The RPR shall provide observation of the Contractor, provide field administration on the work site, and act as the focal point for communication and correspondence with the Contractor at the field level. The RPR shall:
  - a) Provide on-site administration and surveillance, as outlined herein, of the construction activities on the Project.
  - b) If the Contractor has not corrected unsatisfactory work after request of the RPR, advise City of work that remains unsatisfactory, faulty or defective or does not conform to the Contract Documents.
  - c) Receive Contractor's suggestions for modifications in drawings or specifications and report them, with comments, to the City.
  - d) While on site, keep a diary or log book, in ink, recording hours on the job site, weather conditions, labor and equipment employed on the job, the location and nature of work being performed, the progress of the work, instructions given, accidents, data relative to questions of extras or deductions, list of visiting officials and representatives of manufacturers, fabricators, suppliers and distributors, daily activities, decisions, observations in general and specific observations in more detail as in the case of observing test procedures.
  - e) Advise the City, in advance, of scheduled major tests, inspections or the start of important phases of the work.
- 6) At a time near substantial completion of the work, prepare and submit to the Contractor a "punchlist" of items which require correction or completion.
- 7) Receive and record information as it is submitted by the Contractor regarding changes from the contract drawings made during progress of the work. Incorporate such changes on a set of contract plans to be used in preparing record drawings of the project.
- 8) Except upon written instructions of City, the RPR SHALL NOT:
  - a) Authorize any deviation from the Contract Documents or approve any substitution of materials or equipment.
  - b) Neither advise nor issue directions relative to any aspect of the means, methods, techniques, sequences or procedures of construction unless such is specifically called for in the Contract Documents.
  - c) Neither advise nor issue directions as to safety precautions and programs in connection with the work. However, if on site, Jacobs will report immediately to City upon the occurrence of any accident. Record and obtain all possible information concerning

WS #10.

circumstances, weather, unsafe conditions, etc. Obtain pictures, if available, for the project records. This information shall be forwarded immediately to City.

- d) Authorize occupancy, acceptance or conditional acceptance.
- e) Participate in specialized field or laboratory tests, except as specifically authorized to do so by the Contract Documents.
- f) Direct a Contractor to do work at a specific time or in a certain way unless it is an emergency that would otherwise endanger life or property.
- 9) Record Drawings and Certification of Construction Complete. Jacobs will provide record drawings for the project based on information provided by the contractor and recorded during construction. Jacobs will also certify construction is complete and in accordance with MDNR approved plans and specifications as required by MDNR.

# FEE PROPOSAL

Our proposed fee the work described herein is a not to exceed cost of \$199,986. This fee includes only those services outlined in our proposal. Additional services can be provided if requested by the City.

Existing Conditions Survey	\$17,711
Detailed Design	\$117,308
Bid Phase Services	\$5,018
Construction Phase Services	\$56,249
Direct Costs - Travel	\$3,300
Direct Costs - Printing	\$400
Total Not to Exceed Cost	\$199,986

# SCHEDULE

If the City is in agreement with this approach, we would provide a schedule upon notice of acceptance of our proposal.

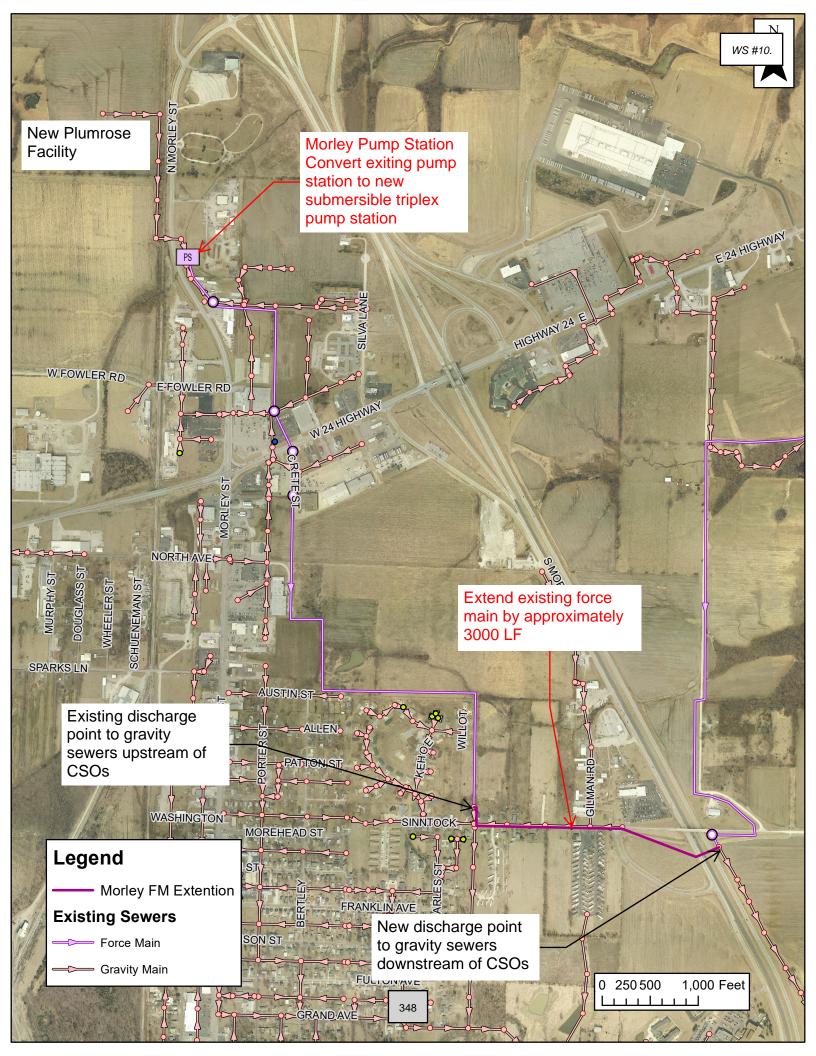
# **ASSUMPTIONS / CLARIFICATIONS:**

This proposal is based on the following assumptions and clarifications:

- 1. Jacobs will refer to the City's standard specifications and details wherever appropriate.
- 2. The electrical and control system design is based on float system for level control and standard across the line starters or soft starters; no PLC based control system design is included.



- 3. Two full size hard copies of the plans and specifications will be provided to the City for each project for the 90% review. Also, two full size sets of the Issued for Bid plans and specifications for each project will be provided to the City, MDNR (construction permit) along with two full size sets submitted to the Dodge and AGC plan rooms.
- 4. Jacobs will provide distribution of the plans and specifications to prospective bidders. Cost for reproduction and shipping of plans and specifications to prospective bidders is not included in the not to exceed cost, and will be charged to the prospective bidder.
- 5. RPR services include one visit every two weeks during force main construction activities, and two visits per week during the pump station retrofit activities. The fee for RPR services is based on:
  - a) A 6-week construction duration for the pump station retrofit, 16 hours per week of RPR services (108 hours).
  - b) A 6-week construction duration for the force main installation, 8 hours every two weeks of RPR services (16 hours)
  - c) Total of 150 hours and 15 visits to the job site
  - d) RPR services are not required during saw cutting or restoration


Should the construction scope require a longer duration in the field or the City would like more per week availability, additional funds may be requested.

6. Two sets of record drawings and an electronic media device with both pdf and AutoCAD files

This work will be performed under the proposed Professional Services Agreement currently being reviewed by the City of Moberly. We will endeavor to be as efficient as we can in performing the work to minimize costs. If you have any questions, please let me know. Thank you for the opportunity to continue our long standing support of the City

Very truly yours,

Tobin Lichti Project Manager 314.422.3336 Tobin.Lichti@Jacobs.com

